1,581 research outputs found

    Tectono-thermal history modeling and reservoir simulation study of the Nenana basin, central Alaska: implications for regional tectonics and geologic carbon sequestration

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2017Central Interior Alaska is an active tectonic deformation zone highlighted by the complex interactions of active strike-slip fault systems with thrust faults and folds of the Alaska Range fold-and-thrust belt. This region includes the Nenana basin and the adjacent Tanana basin, both of which have significant Tertiary coal-bearing formations and are also promising areas (particularly the Nenana basin) with respect to hydrocarbon exploration and geologic carbon sequestration. I investigate the modern-day crustal architecture of the Nenana and Tanana basins using seismic reflection, aeromagnetic and gravity anomaly data and demonstrate that the basement of both basins shows strong crustal heterogeneity. The Nenana basin is a deep (up to 8 km), narrow transtensional pull-apart basin that is deforming along the left-lateral Minto Flats fault zone. The Tanana basin has a fundamentally different geometry and is a relatively shallow (up to 2 km) asymmetrical foreland basin with its southern, deeper side controlled by the northern foothills of the central Alaska Range. NE-trending strike-slip faults within the Tanana basin are interpreted as a zone of clockwise crustal block rotation. Seismic refection data, well data, fracture data and apatite fission track data further constrain the tectonic evolution and thermal history of the Nenana basin. The Nenana basin experienced four distinct tectonic phases since Late Paleocene time. The basin initiated as a narrow half-graben structure in Late Paleocene with accumulation of greater than 6000 feet of sediments. The basin was then uplifted, resulting in the removal of up to 5000 feet of Late Paleocene sediments in Eocene to Oligocene time. During Middle to Late Miocene time, left lateral strike-slip faulting was superimposed on the existing half-graben system. Transtensional deformation of the basin began in the Pliocene. At present, Miocene and older strata are exposed to temperatures > 60°C in the deeper parts of the Nenana basin. Coals have significant capacity for sequestering anthropogenic CO₂ emissions and offer the benefit of enhanced coal bed methane production that can offset the costs associated with the sequestration processes. In order to do a preliminary assessment of the CO₂ sequestration and coal bed methane production potential of the Nenana basin, I used available surface and subsurface data to build and simulate a reservoir model of subbituminous Healy Creek Formation coals. The petroleum exploration data were also used to estimate the state of subsurface stresses that are critical in modeling the orientation, distribution and flow behavior of natural coal fractures in the basin. The effect of uncertainties within major coal parameters on the total CO₂ sequestration and coal bed methane capacity estimates were evaluated through a series of sensitivity analyses, experimental design methods and fluid flow simulations. Results suggest that the mature, unmineable Healy Creek Formation coals of the Nenana basin can sequester up to 0.41 TCF of CO₂ while producing up to 0.36 TCF of CH₄ at the end of 44-year forecast. However, these volumes are estimates and they are also sensitive to the well type, pattern and cap rock lithology. I used a similar workflow to evaluate the state of in situ stress in the northeastern North Slope province of Alaska. The results show two distinct stress regimes across the northeastern North Slope. The eastern Barrow Arch exhibits both strike-slip and normal stress regimes. Along the northeastern Brooks Range thrust front, an active thrust-fault regime is present at depths up to 6000 ft but changes to a strike-slip stress regime at depths greater than 6000 ft.1. Introduction and Statement of Problem -- 2. Crustal structure of the Nenana basin and Tanana basin, central Alaska: constraints from integration of gravity, magnetic and seismic reflection data -- 3. Cenozoic tectonic and thermal history of the Nenana basin, central Interior Alaska: new constraints from seismic reflection data, fracture history and apatite fission-track analyses -- 4. In situ stress variations associated with regional changes in tectonic setting, Northeastern Brooks Range and eastern North Slope of Alaska -- 5. A preliminary study of the carbon sequestration and enhanced coal bed methane production potential of subbituminous to high-volatile bituminous coals of the Healy Creek Formation, Nenana Basin, Interior Alaska -- 6. Conclusions -- 7. Appendix

    Site and Basin Effects on Seismic Hazard in Indonesia:Sulawesi and Jakarta Case Studies

    Get PDF
    Earthquakes are among the most costly, devastating and deadly natural hazards. The extent of the seismic hazard is often influenced by factors like the source location and site characteristics, while the susceptibility of assets is influenced by the population density, building design, infrastructure and urban planning. A comprehensive knowledge of the nature of source and local geology enables the establishment of an effective urban planning that takes into account the potential seismic hazard, which in turn may reduce the degree of vulnerability. The first probabilistic seismic hazard assessment (PSHA) incorporating the effects of local site characteristic for the island of Sulawesi in Indonesia has been conducted. Most of the island, with the exception of South Sulawesi, is undergoing rapid deformation. This leads to high hazard in most regions (such that PGA > 0.4g at 500 year return period including site effects) and extremely high hazard (like PGA > 0.8 g at 500 year return period) along fast-slipping crustal fault. On the other hand, a distant site relative to fault might suffer higher ground motion if that site is composed of soft soil. This research has proven that incorporating near-surface physical properties, in this case is represented by VS30, surface geology contribute significantly to ground motions, consequently, responsible for potential building damage. The PSHA study that took place in Sulawesi took us move further, investigate the effect of deep structure on seismic waves. Jakarta was chosen for its location sitting on less known deep sediment basin and economic and political importances. A dense portable-seismic-broadband network, comprising 96 stations, has been operated within four months covering the Jakarta. The seismic network sampled broadband seismic-noise mostly originating from ocean waves and anthropogenic activity. We used Horizontal-toVertical Spectral Ratio (HVSR) measurements of the ambient seismic noise to estimate the fundamental-mode Rayleigh wave ellipticity curves, which were used to infer the seismic velocity structure of the Jakarta Basin. By mapping and modeling the spatial variation of low-frequency (0.124{0.249 Hz) HVSR peaks, this study reveals variations in the depth to the Miocene basement. To map these velocity profiles of unknown complexity, we employ a Transdimensional-Bayesian framework for the inversion of HVSR curves for 1D profiles of velocity and density beneath each station. The inverted velocity profiles show a sudden change of basement depth from 400 to 1350 m along N-S profile through the center of the city, with an otherwise gentle increase in basin depth from south to north. Seismic wave modelings are conducted afterward and shows that for very deep basin of Jakarta, available ground motion prediction equation (GMPE) is less sufficient in capturing the effect of basin geometry on seismic waves. Earrthquake scenario modeling using SPECFEM2D is performed to comprehend the effect of deep basin on ground motions. This modeling reveals that the city may experience high peak ground velocity (PGV) during large megathrust earthquake. The complexity of the basin is responsible for magnifying ground motions observed in the basin
    • …
    corecore