1,096 research outputs found

    Reflections on the use of Project Wonderland as a mixed-reality environment for teaching and learning

    Get PDF
    This paper reflects on the lessons learnt from MiRTLE?a collaborative research project to create a ?mixed reality teaching and learning environment? that enables teachers and students participating in real-time mixed and online classes to interact with avatar representations of each other. The key hypothesis of the project is that avatar representations of teachers and students can help create a sense of shared presence, engendering a greater sense of community and improving student engagement in online lessons. This paper explores the technology that underpins such environments by presenting work on the use of a massively multi-user game server, based on Sun?s Project Darkstar and Project Wonderland tools, to create a shared teaching environment, illustrating the process by describing the creation of a virtual classroom. It is planned that the MiRTLE platform will be used in several trial applications ? which are described in the paper. These example applications are then used to explore some of the research issues arising from the use of virtual environments within an education environment. The research discussion initially focuses on the plans to assess this within the MiRTLE project. This includes some of the issues of designing virtual environments for teaching and learning, and how supporting pedagogical and social theories can inform this process

    Virtual machines In Education

    Get PDF
    Abstract To provide education and particularly providing practical educational experiences to the students in the field of computing and information technology related courses including practical experience in the field of Networking, System Administration, and Operating Systems needs a lot of resources for the institution. Because this level of technical education can’t be provided only theoretically, students also need hands-on practical experience, and providing practical experience faces a lot of problems such as lack of funding and physical space, risks and threats to the network environment when we attempt to provide real, physical laboratory for experiments. This problem can be solved by developing a virtual environment for delivering students practical education. In this report we will look into different technologies used for virtualization today and do a comparative study. We will also explore some of the institutions, which are using virtual machines based environment to provide students practical experience in the field of computing and information Technology. And see how peoples are getting benefits from using virtual machines. We present how networks of virtual machines can be beneficiary for computing and information technology student and institutions by providing necessary environment in virtual network

    An informatics model for guiding assembly of telemicrobiology workstations for malaria collaborative diagnostics using commodity products and open-source software

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deficits in clinical microbiology infrastructure exacerbate global infectious disease burdens. This paper examines how commodity computation, communication, and measurement products combined with open-source analysis and communication applications can be incorporated into laboratory medicine microbiology protocols. Those commodity components are all now sourceable globally. An informatics model is presented for guiding the use of low-cost commodity components and free software in the assembly of clinically useful and usable telemicrobiology workstations.</p> <p>Methods</p> <p>The model incorporates two general principles: 1) collaborative diagnostics, where free and open communication and networking applications are used to link distributed collaborators for reciprocal assistance in organizing and interpreting digital diagnostic data; and 2) commodity engineering, which leverages globally available consumer electronics and open-source informatics applications, to build generic open systems that measure needed information in ways substantially equivalent to more complex proprietary systems. Routine microscopic examination of Giemsa and fluorescently stained blood smears for diagnosing malaria is used as an example to validate the model.</p> <p>Results</p> <p>The model is used as a constraint-based guide for the design, assembly, and testing of a functioning, open, and commoditized telemicroscopy system that supports distributed acquisition, exploration, analysis, interpretation, and reporting of digital microscopy images of stained malarial blood smears while also supporting remote diagnostic tracking, quality assessment and diagnostic process development.</p> <p>Conclusion</p> <p>The open telemicroscopy workstation design and use-process described here can address clinical microbiology infrastructure deficits in an economically sound and sustainable manner. It can boost capacity to deal with comprehensive measurement of disease and care outcomes in individuals and groups in a distributed and collaborative fashion. The workstation enables local control over the creation and use of diagnostic data, while allowing for remote collaborative support of diagnostic data interpretation and tracking. It can enable global pooling of malaria disease information and the development of open, participatory, and adaptable laboratory medicine practices. The informatic model highlights how the larger issue of access to generic commoditized measurement, information processing, and communication technology in both high- and low-income countries can enable diagnostic services that are much less expensive, but substantially equivalent to those currently in use in high-income countries.</p

    An Experimental Platform for Investigating Decision and Collaboration Technologies in Time-Sensitive Mission Control Operations

    Get PDF
    This report describes the conceptual design and detailed architecture of an experimental platform developed to support investigations of novel decision and collaboration technologies for complex, time-critical mission control operations, such as military command and control and emergency response. In particular, the experimental platform is designed to enable exploration of novel interface and interaction mechanisms to support both human-human collaboration and human-machine collaboration for mission control operations involving teams of human operators engaged in supervisory control of intelligent systems, such as unmanned aerial vehicles (UAVs). Further, the experimental platform is designed to enable both co-located and distributed collaboration among operations team members, as well as between team members and relevant mission stakeholders. To enable initial investigations of new information visualization, data fusion, and data sharing methods, the experimental platform provides a synthetic task environment for a representative collaborative time-critical mission control task scenario. This task scenario involves a UAV operations team engaged in intelligence, surveillance, and reconnaissance (ISR) activities. In the experimental task scenario, the UAV team consists of one mission commander and three operators controlling multiple, homogeneous, semi-autonomous UAVs. In order to complete its assigned missions, the UAV team must coordinate with a ground convoy, an external strike team, and a local joint surveillance and target attack radar system (JSTARS). This report details this task scenario, including the possible simulation events that can occur and the logic governing the simulation dynamics. In order to perform human-in-the-loop experimentation within the synthetic task environment, the experimental platform also consists of a physical laboratory designed to emulate a miniature command center. The Command Center Laboratory comprises a number of large-screen displays, multi-screen operator stations, and mobile, tablet-style devices. This report details the physical configuration and hardware components of this Command Center Laboratory. Details are also provided of the software architecture used to implement the synthetic task environment and experimental interface technologies to facilitate user experiments in this laboratory. The report also summarizes the process of conducting an experiment in the experimental platform, including details of scenario design, hardware and software instrumentation, and participant training. Finally, the report suggests several improvements that could be made to the experimental platform based on insights gained from initial user experiments that have been conducted in this environment.Prepared For Boeing, Phantom Work

    Resolving data center power bill disputes: the energy-performance trade-offs of consolidation

    Get PDF
    This is the author accepted manuscript. The final version is available from ACM via http://dx.doi.org/10.1145/2768510.2770933In this paper we challenge the common evaluation practices used for Virtual Machine (VM) consolidation, such as simulation and small testbeds, which fail to capture the fundamental trade-off between energy consumption and performance. We identify a number of over-simplifying assumptions which are typically made about the energy consumption and performance characteristics of modern networked systems. In response, we describe how more accurate models for data-center systems can be designed and used in order to create an evaluation framework that allows the more reliable exploration of the energy-performance trade-off for VM consolidation strategies.This work was jointly supported by by MINECO (grant TEC2014- 55713-R), the EPSRC INTERNET Project EP / H040536/1, and the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contract FA8750-11-C-0249. The views, opinions, and/or findings contained in this article/presentation are those of the author/presenter and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense

    A Conversational Academic Assistant for the Interaction in Virtual Worlds

    Get PDF
    Proceedings of: Forth International Workshop on User-Centric Technologies and applications (CONTEXTS 2010). Valencia, 07-10 September , 2010.The current interest and extension of social networking are rapidly introducing a large number of applications that originate new communication and interaction forms among their users. Social networks and virtual worlds, thus represent a perfect environment for interacting with applications that use multimodal information and are able to adapt to the specific characteristics and preferences of each user. As an example of this application, in this paper we present an example of the integration of conversational agents in social networks, describing the development of a conversational avatar that provides academic information in the virtual world of Second Life. For its implementation techniques from Speech Technologies and Natural Language Processing have been used to allow a more natural interaction with the system using voice.Funded by projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, SINPROB, CAM MADRINET S-0505/TIC/0255, and DPS2008-07029-C02-02.Publicad

    Cyber-physical framework for emulating distributed control systems in smart grids

    Get PDF
    This paper proposes a cyber-physical framework for investigating distributed control systems operating in the context of smart-grid applications. At the moment, the literature focuses almost exclusively on the theoretical aspects of distributed intelligence in the smart-grid, meanwhile, approaches for testing and validating such systems are either missing or are very limited in their scope. Three aspects need to be taken into account while considering these applications: (1) the physical system, (2) the distributed computation platform, and (3) the communication system. In most of the previous works either the communication system is neglected or oversimplified, either the distributed computation aspect is disregarded, either both elements are missing. In order to cover all these aspects, we propose a framework which is built around a fleet of low-cost single board computers coupled with a real-time simulator. Additionally, using traffic control and network emulation, the flow of data between different controllers is shaped so that it replicates various quality of service (QoS) conditions. The versatility of the proposed framework is shown on a study case in which 27 controllers self-coordinate in order to solve the distributed optimal power flow (OPF) algorithm in a dc network

    A flexible experimental laboratory for distributed generation networks based on power inverters

    Get PDF
    In the recently deregulated electricity market, distributed generation based on renewable sources is becoming more and more relevant. In this area, two main distributed scenarios are focusing the attention of recent research: grid-connected mode, where the generation sources are connected to a grid mainly supplied by big power plants, and islanded mode, where the distributed sources, energy storage devices, and loads compose an autonomous entity that in its general form can be named a microgrid. To conduct a successful research in these two scenarios, it is essential to have a flexible experimental setup. This work deals with the description of a real laboratory setup composed of four nodes that can emulate both scenarios of a distributed generation network. A comprehensive description of the hardware and software setup will be done, focusing especially in the dual-core DSP used for control purposes, which is next to the industry standards and able to emulate real complexities. A complete experimental section will show the main features of the system.Peer ReviewedPostprint (published version
    • …
    corecore