237 research outputs found

    A temperature compensated optical fibre bending sensor for physiological measurement

    Get PDF
    peer-reviewedThe light attenuation measurement of a plastic optical fibre sensor based on a referenced intensity modulation technique with respect to different input voltage level and room temperature has been investigated. The results show that light attenuation at the sensor output and reference output are dependent on the source (LED) drive current and temperature, but the output ratio is small and tolerable for this application. This is significant for bending monitoring applications using optical fibre sensor based on intensity modulation, providing a more reliable technique based on power and temperature compensation.PUBLISHEDpeer-reviewe

    Design of optical fiber sensors and interrogation schemes

    Full text link
    [ES] Las fibras ópticas son dispositivos muy utilizados en el campo de las telecomunicaciones desde su descubrimiento. En las últimas décadas, las fibras ópticas comenzaron a utilizarse como sensores fotónicos. Los primeros trabajos se centraron en la medición de unas dimensiones físicas en un punto específico. Posteriormente, surgió la posibilidad de medir las propiedades de la fibra óptica en diferentes puntos a lo largo de la fibra. Este tipo de sensores se definen como sensores distribuidos. Los componentes optoelectrónicos fueron desarrollados e investigados para telecomunicaciones. Los avances en las telecomunicaciones hicieron posible el desarrollo de sistemas de interrogación para sensores de fibra óptica, creciendo en paralelo con los avances de las telecomunicaciones. Se desarrollaron sistemas de interrogación de fibra óptica que permiten el uso de una única fibra óptica monomodo estándar como sensor que puede monitorear decenas de miles de puntos de detección al mismo tiempo. Los métodos que extraen la información de detección de la señal reflejada en la fibra óptica son los más empleados debido a la facilidad de acceso al sensor y la flexibilidad de estos sistemas. Los más estudiados son la reflectometría en dominios de tiempo y frecuencia. La reflectometría óptica en el dominio del tiempo (OTDR) fue la primera técnica utilizada para detectar la posición de los fallos en las redes de comunica-ción de fibra óptica. El OTDR sensible a la fase hizo posible detectar la elongación y la temperatura en una posición específica. Paralelamente, los gratings de Bragg (FBG) se convirtieron en los dispositivos más utilizados para implementar sensores en fibra óptica discretos. Se desarrollaron técnicas de multiplexación para realizar la detección en múltiples puntos utilizando FGBs. La reflectometría realizada interrogando arrays de FBG débiles demuestra que mejora el rendimiento del sistema en comparación al uso de una fibra monomodo. Los sistemas de interrogatorio actuales tienen algunos inconvenientes. Algunos de ellos son velocidad de interrogatorio limitada, grandes dimensiones y alto costo. En esta tesis doctoral se desarrollaron nuevos sistemas de interrogación y sensores de fibra óptica para superar algunos de estos inconvenientes. Los sensores de fibra óptica de plástico demuestran ser una plataforma innovadora para desarrollar nuevos sensores y sistemas de interrogación de bajo costo y fáciles de implementar para fibras de plástico comerciales. Se investigó la reflectometría en el dominio del tiempo y las técnicas fotónicas de microondas para la interrogación de una matriz de rejillas débiles que permitieron simplificar el sistema de interrogación para la detección de temperatura y vibración.[CA] Les fibres òptiques són dispositius molt utilitzats en el camp de les telecomunica-cions des del seu descobriment. En les últimes dècades, les fibres òptiques van començar a utilitzar-se com a sensors fotònics. Els primers treballs es van centrar en el mesurament d'unes dimensions físiques en un punt específic. Posteriorment, va sorgir la possibilitat de mesurar les propietats de la fibra òptica en diferents punts al llarg de la fibra. Aquest tipus de sensors es defineixen com a sensors distribüits. Els components optoelectrònics van ser desenvolupats i investigats per a telecomunicacions. Els avanços en les telecomunicacions van fer possi-ble el desenvolupament de sistemes d'interrogació per a sensors de fibra òptica, creixent en paral·lel amb els avanços de les telecomunicacions. Es van desenvolupar sistemes d'interrogació de fibra òptica que permeten l'ús d'una única fibra òptica monomodo estàndard com a sensor que pot monitorar desenes de milers de punts de detecció al mateix temps. Els mètodes que extreuen la informació de detecció del senyal reflectit en la fibra òptica són els més utilitzats a causa de la facilitat d'accés al sensor i la flexibilitat d'aquests sistemes. Els més estudiats són la reflectometría en dominis de temps i freqüència. La reflectometría òptica en el domini del temps (OTDR) va ser la primera tècnica utilitzada per a detectar la posició de les fallades en les xarxes de comunicació de fibra òptica. El OTDR sensible a la fase va fer possible detectar l'elongació i la temperatura en una posició específica. Paral·lelament, els gratings de Bragg (FBG) es van convertir en els dispositius més utilitzats per a implementar sensors en fibra òptica discrets. Es van desenvolupar tècniques de multiplexació per a realitzar la detecció en múltiples punts utilitzant FGBs. La reflectometría realitzada interrogant arrays de FBG febles demostra que millora el rendiment del sistema en comparació a l'ús d'una fibra monomodo. Els sistemes d'interrogatori actuals tenen alguns inconvenients. Alguns d'ells són velocitat d'interrogatori limitada, voluminositat i alt cost. En aquesta tesi doctoral es van desenvolupar nous sistemes d'interrogació i sensors de fibra òptica per a superar alguns d'aquests inconvenients. Els sensors de fibra òptica de plàstic demostren ser una plataforma innovadora per a desenvolupar nous sensors i siste-mes d'interrogació de baix cost i fàcils d'implementar per a fibres de plàstic comercials. Es va investigar la reflectometría en el domini del temps i les tècniques fotòniques de microones per a la interrogació d'una matriu de reixetes febles que van permetre simplificar el sistema d'interrogació per a la detecció de temperatura i vibració.[EN] Optical fibers are devices largely used in telecommunication field since their discovery. In the last decades, optical fibers started to be used as photonic sensors. The first works were focused on the measurement of physical dimensions to a specific point. Afterward, emerged the possibility to measure the optical fiber properties at different locations along the fiber. These kinds of sensors are defined as distributed sensors. The optoelectronic components were developed and investigated for telecommunications. The progress in telecommunication made possible the development of optical fiber sensors interrogation systems, growing in parallel with the advances of telecommunications. Optical fiber interrogation systems were developed to use a single standard monomode optical fiber as a sensor that can monitor tens of thousands of sensing points at the same time. The methods that extract the sensing information from the backscattered signal in the optical fiber are widely employed because of the easiness of access to the sensor element and the flexibility of these systems. The most studied are the reflectometry in time and frequency domains. The optical time domain reflectometry (OTDR) was the first technique used to detect the position of the failures in the optical fiber communication networks. Using phase sensitive OTDR it is possible to sense strain and temperature at a specific position. In parallel, fiber Bragg gratings (FBGs) became the most widely used devices to implement discrete optical fiber sensors. Multiplexing techniques were developed to perform multi points sensing using these gratings. The reflectometry performed interrogating weak FBGs arrays demonstrate to improve the performance of the system employing a single mode fiber. The interrogation systems nowadays have some drawbacks. Some of them are limited speed of interrogation, bulkiness, and high cost. New interrogation systems and optical fiber sensors were developed in this doctoral thesis to overcome some of these drawbacks. Plastic optical fiber sensors demonstrate to be an innovative platform to develop both new sensors and low cost, easy to implement interrogation systems for commercial plastic fibers. Reflectometry in time domain and microwave photonic techniques were investigated for the interrogation of weak gratings array allowed to simplify the interrogation system for the sensing of temperature and vibration.I would like to greatly thank the European Union’s Horizon 2020 Research and Innovation Program that funded the research described in this thesis under the Marie Sklodowska-Curie Action Grant Agreement 722509.Sartiano, D. (2021). Design of optical fiber sensors and interrogation schemes [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/161357TESI

    Smartphone Plastic Optical Fiber Sensors

    Get PDF
    Telehealth is quickly becoming an essential tool in delivering medical care. It can easily be used to monitor the states of patients who are located at remote locations away from hospitals. For example, breathing rate is one of important physiological parameters requiring monitoring, since it can be used in the diagnosis of respiratory diseases. However, the tools of remote monitoring have to be cheap and easy in use. These requirements can be satisfied by smartphone sensor based on plastic optical fiber (POF). The proposed solution is an all-fiber sensor where the flashlight acts as a light source and the camera acts as a photodetector. First of all, smartphones have become ubiquitous. POF, on the other hand, is not expensive. Hence, the proposed combination can be a cost-effective solution for implementing telehealth. In the work, the technique of intensity modulation in POF is adapted for sensing breathing rate. The measurements are analyzed in both time and frequency domains. In addition, multiplexing is also a promising direction for conducting sensing in optical fibers, since it can be used to measure multiple parameters. The possibility of implementing it in POF will be considered as well

    A self-referenced optical intensity sensor network using POFBGs for biomedical applications

    Get PDF
    This work bridges the gap between the remote interrogation of multiple optical sensors and the advantages of using inherently biocompatible low-cost polymer optical fiber (POF)-based photonic sensing. A novel hybrid sensor network combining both silica fiber Bragg gratings (FBG) and polymer FBGs (POFBG) is analyzed. The topology is compatible with WDM networks so multiple remote sensors can be addressed providing high scalability. A central monitoring unit with virtual data processing is implemented, which could be remotely located up to units of km away. The feasibility of the proposed solution for potential medical environments and biomedical applications is shown

    Review of fiber-optic pressure sensors for biomedical and biomechanical applications

    Get PDF
    As optical fibers revolutionize the way data is carried in telecommunications, the same is happening in the world of sensing. Fiber-optic sensors (FOS) rely on the principle of changing the properties of light that propagate in the fiber due to the effect of a specific physical or chemical parameter. We demonstrate the potentialities of this sensing concept to assess pressure in biomedical and biomechanical applications. FOSs are introduced after an overview of conventional sensors that are being used in the field. Pointing out their limitations, particularly as minimally invasive sensors, is also the starting point to argue FOSs are an alternative or a substitution technology. Even so, this technology will be more or less effective depending on the efforts to present more affordable turnkey solutions and peer-reviewed papers reporting in vivo experiments and clinical trials.info:eu-repo/semantics/publishedVersio

    Force Sensing in Arthroscopic Instruments using Fiber Bragg Gratings

    Get PDF
    Minimally-invasive surgery has revolutionized many medical procedures; however, it also impedes the ability to feel the interaction between the surgical tool and the anatomical part being operated on. In order to address this problem, it is necessary to obtain accurate measurements of the interaction forces exerted on the surgical tools during surgery. These forces can then be manifested to the surgeon via a haptic device or presented visually (visual-force feedback). This thesis describes the use of a fiber optic device to measure and display to the surgeon interaction forces acting on an arthroscopic tool. The sensorization of the tool involves a simple, highly efficient and robust design and is ideally suited for use in a surgical training environment aimed at narrowing the gap between trainees and expert surgeons before the trainees proceed to their first surgery in vivo. The major advantages of using fiber optics include their small size, their local simplicity, their ease of sterilization, and their high sensitivity. In this thesis, a complete low-cost sensing solution is described, including 1) the use of fiber Bragg grating and long period grating sensors, 2) design of a low-cost optical interrogator, 3) high resolution electronic signal processing, and 4) fabrication of the tool using wire EDM, CNC, and 3D metal sintering technologies. The full design of an arthroscopic grasper is presented, along with the preliminary design and manufacturing of an arthroscopic probe and shaver. The designed low-cost system was compared with a commercially-available optical interrogator. The calibration and experimental results for this system are presented and discussed for accuracy and performance of the sensorized tool before and after an axial element was added for increased sensitivity. Sources of error and methods of improvement for the optical system, arthroscopic tool, and testing procedures are discussed to inform the design of future generations of these instruments

    Polymer Optical Fiber Curvature Measuring Technique Based on Speckle Pattern Image Processing

    Get PDF
    A self-developed light intensity-modulated curvature measuring principle for the measurement of bending angles within a range from −120 ◦ to +130 ◦ under application of a Polymer Optical Fiber is described in the present work. The determination of the bending angle is based on the graphical analysis of the speckle-pattern that is affected by the curved fiber. The contours of speckles in a defined region of interest in the speckle-pattern are made visible by an edge-detection algorithm and their amount is set in relation to the bending angle. The digital image of a speckle-pattern represents a source of image information that facilitates the further analysis by a variety of image processing techniques. The purpose of this work is the evaluation of a graphical analysis of a speckle-pattern for the curvature measurement. The research incorporates the basic study of general effects on the fiber under curvature until the development of a final measurement setup that facilitates a reliable and precise measurement of the bending angle. Coherent light with a wavelength of 632.8 nm is propagated through a looped Polymer Optical Fiber and received by a 5-Megapixel Charge-Coupled-Device-camera, positioned on the fiber output face. An especially designed acrylic goniometer facilitates the defined bending of the fiber for different fiber loop configurations. Different fiber arrangements and spatial image filters are evaluated under consideration of precision of bending angle gauging and computational efficiency. A developed digital signal processing routine performs a signal noise reduction and precision improvement for the bending angle measurement. Practical results revealed the existence of a non-linear dependence in static and dynamic operation in the range from −120 ◦ to +130 ◦ between the geometrical arrangements of the fiber, the average pixel intensity, the amount of detected speckle contours and the bending angle. A potential application of the sensor for the measurement of human joint movement and posture in the medical field of rehabilitation is possible. The curvature measurement for an application in the robotic field or industrial application is also convenient

    Sensores em fibra ótica para o estudo biomecânico do disco intervertebral

    Get PDF
    Doutoramento em Engenharia MecânicaO presente trabalho teve como objetivo principal estudar o comportamento mecânico do disco intervertebral recorrendo a sensores em fibra ótica. Na expetativa de efetuar o melhor enquadramento do tema foi efetuada uma revisão exaustiva das várias configurações de sensores em fibra ótica que têm vindo a ser utilizadas em aplicações biomédicas e biomecânicas, nomeadamente para medição de temperatura, deformação, força e pressão. Nesse âmbito, procurou-se destacar as potencialidades dos sensores em fibra ótica e apresentá-los como uma tecnologia alternativa ou até de substituição das tecnologias associadas a sensores convencionais. Tendo em vista a aplicação de sensores em fibra ótica no estudo do comportamento do disco intervertebral efetuou-se também uma revisão exaustiva da coluna vertebral e, particularmente, do conceito de unidade funcional. A par de uma descrição anatómica e funcional centrada no disco intervertebral, vértebras adjacentes e ligamentos espinais foram ainda destacadas as suas propriedades mecânicas e descritos os procedimentos mais usuais no estudo dessas propriedades. A componente experimental do presente trabalho descreve um conjunto de experiências efetuadas com unidades funcionais cadavéricas utilizando sensores convencionais e sensores em fibra ótica com vista à medição da deformação do disco intervertebral sob cargas compressivas uniaxiais. Inclui ainda a medição in vivo da pressão intradiscal num disco lombar de uma ovelha sob efeito de anestesia. Para esse efeito utilizou-se um sensor comercial em fibra ótica e desenvolveu-se a respetiva unidade de interrogação. Finalmente apresenta-se os resultados da investigação em curso que tem como objetivo propor e desenvolver protótipos de sensores em fibra ótica para aplicações biomédicas e biomecânicas. Nesse sentido, são apresentadas duas soluções de sensores interferométricos para medição da pressão em fluídos corporais.The present work aimed to study the mechanical behavior of the intervertebral disc using fiber optic sensors. To address the theme an exhaustive review of the various configurations of fiber optic sensors that have been used in biomechanical and biomedical applications, in particular for measuring temperature, strain, force and pressure, was conducted. In this context, an effort was made to highlight the advantages of fiber optic sensors and present them as an alternative or even a substitution technology to conventional sensors. In view of the application of fiber optic sensors to study intervertebral disc behavior an exhaustive review of the spine and, particularly, of the spinal motion segment was made. Along with an anatomical and functional description of the intervertebral disc, the adjacent vertebrae and spinal ligaments, their mechanical properties were also highlighted as well as the most common procedures and guidelines followed in the study of these properties. The experimental section of the present work describes a set of tests performed with cadaveric spinal motion segments using conventional and fiber optic sensors to assess strain of the intervertebral disc under uniaxial compressive loads. This section also includes an experience reporting in vivo pressures measured in the lumbar disc of a sheep under general anesthesia. In this case, a commercial fiber optic sensor and a purpose-built interrogation unit were used. Finally, the results of ongoing research aiming to develop fiber optic sensors prototypes for biomedical and biomechanical applications are presented. Thus, the proof of concept of two possible interferometric configurations intended for pressure measurement in body fluids was presented

    Fiber optic sensors and self-reference techniques for temperature measurements in different industrial sectors

    Get PDF
    Mención Internacional en el título de doctorEl objetivo de este trabajo se centra especialmente en el desarrollo de sensores de fibra óptica y técnicas de autoreferencia para la medida de la temperatura en diferentes entornos industriales. El primer objetivo de este trabajo consiste en el diseño y desarrollo de un sensor de fibra óptica de bajo coste para la medida de la temperatura en transformadores de potencia y aplicaciones biomédicas. En estas aplicaciones, el uso de sensores de temperatura tradicionales resulta inadecuado debido a la presencia de fuertes interferencias electromagnéticas que pueden perturbar la lectura de la temperatura. Uno de los requisitos fundamentales para diseñar un sensor de temperatura que pueda usarse en aplicaciones biomédicas es el uso de materiales biocompatibles en su fabricación. En este sentido, una configuración simple que permite cumplir con los requisitos mencionados anteriormente es la modulación por intensidad en fibras poliméricas. Este tipo de sensores basan la lectura de la temperatura en medir las variaciones de potencia óptica en función de los cambios de temperatura que se aplican sobre el sensor. En este contexto, el uso de la tecnología asociada con la fibra óptica de plástico ofrece ventajas competitivas frente a otros materiales, como son: el uso de dispositivos opto-electrónicos de bajo coste, la posibilidad de utilizar conectores de baja precisión, la posibilidad de utilizar multiplexores y demultiplexores de muy bajo coste, entre muchas otras ventajas. A pesar de estas ventajas, los sensores de intensidad necesitan de esquemas de autoreferencia que eviten fluctuaciones de potencia que interfieran en la lectura de la temperatura. Estas fluctuaciones pueden provenir de fluctuaciones de potencia a lo largo del tramo de fibra óptica entre la unidad de control y el sensor, fluctuaciones de la fuente de luz por cambios en la corriente de alimentación, pérdidas de potencia por envejecimiento de la instalación, entre otras causas. El segundo objetivo de este trabajo consiste en promover el estudio y el desarrollo de técnicas de multiplexado y autoreferencia que implementen sensores fabricados en fibra óptica de plástico. Estas topologías deberán de utilizar dispositivos eficientes desde el punto de vista del consumo de potencia para mejorar con ello el balance de potencias del sistema y por tanto, poder utilizar este tipo de esquemas en redes de corto y medio alcance. Para alcanzar este objetivo, en este trabajo se desarrollan técnicas de autoreferencia y multiplexado de bajo coste basadas en multiplexación por longitud de onda vasta (CWDM, Coarse Wavelength Division Multiplexing). Esta técnica se caracteriza por su amplio desarrollo en el campo de telecomunicaciones como estándar para aplicaciones de corto o medio alcance en redes metropolitanas. Los multiplexores y demultiplexores diseñados para esta topología tienen una rejilla de longitudes de onda con una separación entre canales de 20nm. Este espaciado entre canales dificulta la multiplexación de un elevado número de dispositivos o sensores como podría llevarse a cabo si se usaran dispositivos basados en multiplexación por longitud de onda densa (DWDM, Dense Wavelength Division Multiplexing). Pero presentan una clara ventaja competitiva, los esquemas CWDM requieren bajas tolerancias en la fabricación de fuentes de luz, un control menos exhaustivo de la temperatura de la fuente, filtros ópticos de bajo coste y esquemas de diseño menos complejos. Los menores requisitos técnicos de los dispositivos utilizados con esta tecnología hacen que sea una topología interesante para su uso en redes de sensores de bajo coste. El tercer objetivo consiste en desarrollar sensores sin contacto basados en pirometría de dos colores para el sensado de la temperatura en procesos de mecanizado industrial...As a general aim, this work specifically focuses on the development of temperature sensors and self-reference techniques for temperature measurement in different industrial sectors. The first objective of this work is the design and development of a low-cost fiber optic sensor for measuring temperature in power transformers and biomedical applications where the presence of EMI prohibits the use of traditional sensors. Compatibility with the human being is a requirement when the temperature sensors are used in medical applications. Following simple fiber optic configurations, intensity sensors modulate the optical power loss as the temperature changes, thus providing the measurement as an optical intensity modulation signal. Polymer Optical Fiber (POF) technology, with very low-cost components, enables temperature sensing using a low precision connectors and lenses as well as simple multiplexing and demultiplexing devices, especially if compared with glass optical fibers. However, intensity sensors need a self-referencing method to minimize the influences of long-term aging of source and receptor characteristics, as well as undesirable random short-term fluctuations of optical power loss in the fiber link connecting the control unit, where the measurements are taken, to the remote sensing point, where the optical sensor is located. The second objective of this work is to promote, study and develop a multiplexing strategy to implement and scale POF sensor networks using low cost off-the-shelf devices, enhancing the power budget and keeping the self-reference of the measurements. This work focuses on low-cost Coarse WDM (CWDM) technology, where a grid of wavelengths with a 20nm channel spacing for target distance of up to tens of kilometres is specified. CWDM technology have lately been promoted in the field of telecommunication as standard for metro applications with shorter distances, lower network capacity and cost than Dense WDM (DWDM). This topology requires simpler, wider tolerance laser manufacturing, less laser accurate temperature control and reduced design complexity and cost of optical filters. These relaxed requirements make the CWDM technology an interesting approach for building low-cost self-referencing sensors networks. The development of this technology, adapted to the use of POF, can be carried out with the development of fiber Bragg gratings (FBG) in POF, providing an effective and compact strategy for exploiting fiber links for both propagating directions of the light with a single fiber lead. The third objective is to develop a non-contact two-colour fiber-optic pyrometer for temperature measures in the aerospace machining industry, enhancing the location measurement area, reducing the surface emissivity effect and keeping the self-reference of the measurement…The research work of this dissertation has been supported by the following Spanish projects: TEC2009-14718-C03-03 (DEDOS), and TEC2012-37983-C03-02 (CFOOT-TIC) of the Spanish Interministerial Commission of Science and Technology (CICYT); BES-2010-033348, EEBB-I-12-05434 and EEBB-1-13-07511 of the Spanish Ministry of Economy and Competitiveness; PRX12/00007 of Spanish Ministry of Education; P2013/MIT-2790, FACTOTEM-2/2010/00068/001 and S2013/MIT-2790 (SINFOTON-CM) of Autonomous Community of Madrid. Additional financial support was obtained from ICT COST Action TD1001: Novel and Reliable Optical Fiber Sensor Systems for Future Security and Safety Applications (OFSESA) of the European Union.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Tianxin Yang.- Secretario: Ricardo Vergaz Benito.- Vocal: Kevin Heggart

    Sensores de fibra ótica para arquiteturas e-Health

    Get PDF
    In this work, optical fiber sensors were developed and optimized for biomedical applications in wearable and non-intrusive and/or invisible solutions. As it was intended that the developed devices would not interfere with the user's movements and their daily life, the fibre optic sensors presented several advantages when compared to conventional electronic sensors, among others, the following stand out: size and reduced weight, biocompatibility, safety, immunity to electromagnetic interference and high sensitivity. In a first step, wearable devices with fibre optic sensors based in Fiber Bragg gratings (FBG) were developed to be incorporated into insoles to monitor different walking parameters based on the analysis of the pressure exerted on several areas of the insole. Still within this theme, other sensors were developed using the same sensing technology, but capable of monitoring pressure and shear forces simultaneously. This work was pioneering and allowed monitoring one of the main causes of foot ulceration in people with diabetes: shear. At a later stage, the study focused on the issue related with the appearance of ulcers in people with reduced mobility and wheelchair users. In order to contribute to the mitigation of this scourge, a system was developed composed of a network of fibre optic sensors capable of monitoring the pressure at various points of the wheelchair. It not only measures the pressure at each point, but also monitors the posture of the wheelchair user and advises him/her to change posture regularly to reduce the probability of this pathology occurring. Still within this application, another work was developed where the sensor not only monitored the pressure but also the temperature in each of the analysis points, thus indirectly measuring shear. In another phase, plastic fibre optic sensors were studied and developed to monitor the body posture of an office chair user. Simultaneously, software was developed capable of monitoring and showing the user all the acquired data in real time and warning for incorrect postures, as well as advising for work breaks. In a fourth phase, the study focused on the development of highly sensitive sensors embedded in materials printed by a 3D printer. The sensor was composed of an optical fibre with a FBG and the sensor body of a flexible polymeric material called "Flexible". This material was printed on a 3D printer and during its printing the optical fibre was incorporated. The sensor proved to be highly sensitive and was able to monitor respiratory and cardiac rate, both in wearable solutions (chest and wrist) and in "invisible" solutions (office chair).Neste trabalho foram desenvolvidos e otimizados sensores em fibra ótica para aplicações biomédicas em soluções vestíveis e não intrusivas/ou invisíveis. Tendo em conta que se pretende que os dispositivos desenvolvidos não interfiram com os movimentos e o dia-a-dia do utilizador, os sensores de fibra ótica apresentam inúmeras vantagens quando comparados com os sensores eletrónicos convencionais, de entre várias, destacam-se: tamanho e peso reduzido, biocompatibilidade, segurança, imunidade a interferências eletromagnéticas e elevada sensibilidade. Numa primeira etapa, foram desenvolvidos dispositivos vestíveis com sensores de fibra ótica baseados em redes de Bragg (FBG) para incorporar em palmilhas de modo a monitorizar diferentes parâmetros da marcha com base na análise da pressão exercida em várias zonas da palmilha. Ainda no âmbito deste tema, adicionalmente, foram desenvolvidos sensores utilizando a mesma tecnologia de sensoriamento, mas capazes de monitorizar simultaneamente pressão e forças de cisalhamento. Este trabalho foi pioneiro e permitiu monitorizar um dos principais responsáveis pela ulceração dos pés em pessoas com diabetes: o cisalhamento. Numa fase posterior, o estudo centrou-se na temática relacionada com o aparecimento de úlceras em pessoas com mobilidade reduzida e utilizadores de cadeiras de rodas. De modo a contribuir para a mitigação deste flagelo, procurou-se desenvolver um sistema composto por uma rede de sensores de fibra ótica capaz de monitorizar a pressão em vários pontos de uma cadeira de rodas e não só aferir a pressão em cada ponto, mas monitorizar a postura do cadeirante e aconselhá-lo a mudar de postura com regularidade, de modo a diminuir a probabilidade de ocorrência desta patologia. Ainda dentro desta aplicação, foi publicado um outro trabalho onde o sensor não só monitoriza a pressão como também a temperatura em cada um dos pontos de análise, conseguindo aferir assim indiretamente o cisalhamento. Numa outra fase, foi realizado o estudo e desenvolvimento de sensores de fibra ótica de plástico para monitorizar a postura corporal de um utilizador de uma cadeira de escritório. Simultaneamente, foi desenvolvido um software capaz de monitorizar e mostrar ao utilizador todos os dados adquiridos em tempo real e advertir o utilizador de posturas incorretas, bem como aconselhar para pausas no trabalho. Numa quarta fase, o estudo centrou-se no desenvolvimento de sensores altamente sensíveis embebidos em materiais impressos 3D. O sensor é composto por uma fibra ótica com uma FBG e o corpo do sensor por um material polimérico flexível, denominado “Flexible”. O sensor foi impresso numa impressora 3D e durante a sua impressão foi incorporada a fibra ótica. O sensor demonstrou ser altamente sensível e foi capaz de monitorizar frequência respiratória e cardíaca, tanto em soluções vestíveis (peito e pulso) como em soluções “invisíveis” (cadeira de escritório).Programa Doutoral em Engenharia Físic
    corecore