389 research outputs found

    Cyber-Agricultural Systems for Crop Breeding and Sustainable Production

    Get PDF
    The Cyber-Agricultural System (CAS) Represents an overarching Framework of Agriculture that Leverages Recent Advances in Ubiquitous Sensing, Artificial Intelligence, Smart Actuators, and Scalable Cyberinfrastructure (CI) in Both Breeding and Production Agriculture. We Discuss the Recent Progress and Perspective of the Three Fundamental Components of CAS – Sensing, Modeling, and Actuation – and the Emerging Concept of Agricultural Digital Twins (DTs). We Also Discuss How Scalable CI is Becoming a Key Enabler of Smart Agriculture. in This Review We Shed Light on the Significance of CAS in Revolutionizing Crop Breeding and Production by Enhancing Efficiency, Productivity, Sustainability, and Resilience to Changing Climate. Finally, We Identify Underexplored and Promising Future Directions for CAS Research and Development

    Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis

    Get PDF
    The morphology of roots and root systems influences the efficiency by which plants acquire nutrients and water, anchor themselves and provide stability to the surrounding soil. Plant genotype and the biotic and abiotic environment significantly influence root morphology, growth and ultimately crop yield. The challenge for researchers interested in phenotyping root systems is, therefore, not just to measure roots and link their phenotype to the plant genotype, but also to understand how the growth of roots is influenced by their environment. This review discusses progress in quantifying root system parameters (e.g. in terms of size, shape and dynamics) using imaging and image analysis technologies and also discusses their potential for providing a better understanding of root:soil interactions. Significant progress has been made in image acquisition techniques, however trade-offs exist between sample throughput, sample size, image resolution and information gained. All of these factors impact on downstream image analysis processes. While there have been significant advances in computation power, limitations still exist in statistical processes involved in image analysis. Utilizing and combining different imaging systems, integrating measurements and image analysis where possible, and amalgamating data will allow researchers to gain a better understanding of root:soil interactions

    A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding

    Get PDF
    Collecting plant phenotypic data with sufficient resolution (in both space and time) and accuracy represents a long standing challenge in plant science research, and has been a major limiting factor for the effective use of genomic data for crop improvement. This is particularly true in plant breeding where collecting large-scale field-based plant phenotypes can be very labor intensive and costly. In this paper we reported a multi-sensor system for high throughput phenotyping in plant breeding. The system comprised five sensor modules (ultrasonic distance sensors, thermal infrared radiometers, NDVI sensors, portable spectrometers, and RGB web cameras) to measure crop canopy traits from field plots. A GPS was used to geo-reference the sensor measurements. Two environmental sensors (a solar radiation sensor and air temperature/relative humidity sensor) were also integrated into the system to collect simultaneous environmental data. A LabVIEW program was developed to control and synchronize measurements from all sensor modules and stored sensor readings in the host computer. Canopy reflectance spectra (by portable spectrometers) were post processed to extract NDVI and red-edge NDVI spectral indices; and RGB images were post processed to extract canopy green pixel fraction (as a proxy for biomass). The sensor system was tested in a soybean and wheat field trial. The results showed strong correlations among the sensor-based plant traits at both early and late growing season. Significant correlations were also found between the sensor-based traits and final grain yield at the early season (Pearson’s correlation coefficient r ranged from 0.41 to 0.55) and late season (r from 0.55 to 0.70), suggesting the potential use of the sensor system to assist in phenotypic selection for plant breeding. The sensor system performed satisfactorily and robustly in the field tests. It was concluded that the sensor system could be a powerful tool for plant breeders to collect field-based, high throughput plant phenotyping data

    A high-throughput, field-based phenotyping technology for tall biomass crops

    Get PDF
    Recent advances in omics technologies have not been accompanied by equally efficient, cost-effective and accurate phenotyping methods required to dissect the genetic architecture of complex traits. Even though high-throughput phenotyping platforms have been developed for controlled environments, field-based aerial and ground technologies have only been designed and deployed for short stature crops. Therefore, we developed and tested Phenobot 1.0, an auto-steered and self-propelled field-based high-throughput phenotyping platform for tall dense canopy crops, such as sorghum (Sorghum bicolor L. Moench). Phenobot 1.0 was equipped with laterally positioned and vertically stacked stereo RGB cameras. Images collected from 307 diverse sorghum lines were reconstructed in 3D for feature extraction. User interfaces were developed and multiple algorithms were evaluated for their accuracy in estimating plant height and stem diameter. Tested feature extraction methods included: i) User-interactive Individual Plant Height Extraction based on dense stereo 3D reconstruction (UsIn-PHe); ii) Automatic Hedge-based Plant Height Extraction (Auto-PHe) based on dense stereo 3D reconstruction; iii) User-interactive Dense Stereo Matching Stem Diameter Extraction (DenS-Di); and iv) User-interactive Image Patch Stereo Matching Stem Diameter Extraction (IPaS-Di). Comparative genome-wide association analysis and ground-truth validation demonstrated that both UsIn-PHe and Auto-PHe were accurate methods to estimate plant height while Auto-PHe had the additional advantage of being a completely automated process. For stem diameter, IPaS-Di generated the most accurate estimates of this biomass-related architectural trait. In summary, our technology was proven robust to obtain ground-based high-throughput plant architecture parameters of sorghum, a tall and densely planted crop species

    High-throughput phenotyping of plant leaf morphological, physiological, and biochemical traits on multiple scales using optical sensing

    Get PDF
    Acquisition of plant phenotypic information facilitates plant breeding, sheds light on gene action, and can be applied to optimize the quality of agricultural and forestry products. Because leaves often show the fastest responses to external environmental stimuli, leaf phenotypic traits are indicators of plant growth, health, and stress levels. Combination of new imaging sensors, image processing, and data analytics permits measurement over the full life span of plants at high temporal resolution and at several organizational levels from organs to individual plants to field populations of plants. We review the optical sensors and associated data analytics used for measuring morphological, physiological, and biochemical traits of plant leaves on multiple scales. We summarize the characteristics, advantages and limitations of optical sensing and data-processing methods applied in various plant phenotyping scenarios. Finally, we discuss the future prospects of plant leaf phenotyping research. This review aims to help researchers choose appropriate optical sensors and data processing methods to acquire plant leaf phenotypes rapidly, accurately, and cost-effectively

    Review:New sensors and data-driven approaches—A path to next generation phenomics

    Get PDF
    At the 4th International Plant Phenotyping Symposium meeting of the International Plant Phenotyping Network (IPPN) in 2016 at CIMMYT in Mexico, a workshop was convened to consider ways forward with sensors for phenotyping. The increasing number of field applications provides new challenges and requires specialised solutions. There are many traits vital to plant growth and development that demand phenotyping approaches that are still at early stages of development or elude current capabilities. Further, there is growing interest in low-cost sensor solutions, and mobile platforms that can be transported to the experiments, rather than the experiment coming to the platform. Various types of sensors are required to address diverse needs with respect to targets, precision and ease of operation and readout. Converting data into knowledge, and ensuring that those data (and the appropriate metadata) are stored in such a way that they will be sensible and available to others now and for future analysis is also vital. Here we are proposing mechanisms for “next generation phenomics” based on our learning in the past decade, current practice and discussions at the IPPN Symposium, to encourage further thinking and collaboration by plant scientists, physicists and engineering experts

    A real-time phenotyping framework using machine learning for plant stress severity rating in soybean

    Get PDF
    Background: Phenotyping is a critical component of plant research. Accurate and precise trait collection, when integrated with genetic tools, can greatly accelerate the rate of genetic gain in crop improvement. However, efficient and automatic phenotyping of traits across large populations is a challenge; which is further exacerbated by the necessity of sampling multiple environments and growing replicated trials. A promising approach is to leverage current advances in imaging technology, data analytics and machine learning to enable automated and fast phenotyping and subsequent decision support. In this context, the workflow for phenotyping (image capture → data storage and curation → trait extraction → machine learning/classification → models/apps for decision support) has to be carefully designed and efficiently executed to minimize resource usage and maximize utility. We illustrate such an end-to-end phenotyping workflow for the case of plant stress severity phenotyping in soybean, with a specific focus on the rapid and automatic assessment of iron deficiency chlorosis (IDC) severity on thousands of field plots. We showcase this analytics framework by extracting IDC features from a set of ~4500 unique canopies representing a diverse germplasm base that have different levels of IDC, and subsequently training a variety of classification models to predict plant stress severity. The best classifier is then deployed as a smartphone app for rapid and real time severity rating in the field. Results: We investigated 10 different classification approaches, with the best classifier being a hierarchical classifier with a mean per-class accuracy of ~96%. We construct a phenotypically meaningful ‘population canopy graph’, connecting the automatically extracted canopy trait features with plant stress severity rating. We incorporated this image capture → image processing → classification workflow into a smartphone app that enables automated real-time evaluation of IDC scores using digital images of the canopy. Conclusion: We expect this high-throughput framework to help increase the rate of genetic gain by providing a robust extendable framework for other abiotic and biotic stresses. We further envision this workflow embedded onto a high throughput phenotyping ground vehicle and unmanned aerial system that will allow real-time, automated stress trait detection and quantification for plant research, breeding and stress scouting applications
    • 

    corecore