379 research outputs found

    Advancing environmental intelligence through novel approaches in soft bioinspired robotics and allied technologies: I-Seed project position paper for Environmental Intelligence in Europe

    Get PDF
    The EU-funded FET Proactive Environmental Intelligence project "I-Seed"(Grant Agreement n. 101017940, https://www.iseedproject.eu/) targets towards the development of a radically simplified and environmentally friendly approach for environmental monitoring. Specifically, I-Seed aims at developing a new generation of self-deployable and biodegradable soft miniaturized robots, inspired by the morphology and dispersion abilities of plant seeds, able to perform low-cost, environmentally responsible, in-situ measurements. The natural functional mechanisms of seeds dispersal offer a rich source of robust, highly adaptive, mass and energy efficient mechanisms, and behavioral and morphological intelligence, which can be selected and implemented for advanced, but simple, technological inventions. I-Seed robots are conceived as unique in their movement abilities because inspired by passive mechanisms and materials of natural seeds, and unique in their environmentally friendly design because made of all biodegradable components. Sensing is based on a chemical transduction mechanism in a stimulus-responsive sensor material with fluorescence-based optical readout, which can be read via one or more drones equipped with fluorescent LiDAR technology and a software able to perform a real time georeferencing of data. The I-Seed robotic ecosystem is envisioned to be used for collecting environmental data in-situ with high spatial and temporal resolution across large remote areas where no monitoring data are available, and thus for extending current environmental sensor frameworks and data analysis systems

    Intrinsic and environmental factors modulating autonomous robotic search under high uncertainty

    Full text link
    Autonomous robotic search problems deal with different levels of uncertainty. When uncertainty is low, deterministic strategies employing available knowledge result in most effective searches. However, there are domains where uncertainty is always high since information about robot location, environment boundaries or precise reference points is unattainable, e.g., in cave, deep ocean, planetary exploration, or upon sensor or communications impairment. Furthermore, latency regarding when search targets move, appear or disappear add to uncertainty sources. Here we study intrinsic and environmental factors that affect low-informed robotic search based on diffusive Brownian, naive ballistic, and superdiffusive strategies (Lévy walks), and in particular, the effectiveness of their random exploration. Representative strategies were evaluated considering both intrinsic (motion drift, energy or memory limitations) and extrinsic factors (obstacles and search boundaries). Our results point towards minimum-knowledge based modulation approaches that can adjust distinct spatial and temporal aspects of random exploration to lead to effective autonomous search under uncertaintyThis work was supported in part by Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER), under Grants PGC2018-095895-B-I00, TIN2017-84452-R, and PID2020-114867RB-I0

    Standardization Framework for Sustainability from Circular Economy 4.0

    Get PDF
    The circular economy (CE) is widely known as a way to implement and achieve sustainability, mainly due to its contribution towards the separation of biological and technical nutrients under cyclic industrial metabolism. The incorporation of the principles of the CE in the links of the value chain of the various sectors of the economy strives to ensure circularity, safety, and efficiency. The framework proposed is aligned with the goals of the 2030 Agenda for Sustainable Development regarding the orientation towards the mitigation and regeneration of the metabolic rift by considering a double perspective. Firstly, it strives to conceptualize the CE as a paradigm of sustainability. Its principles are established, and its techniques and tools are organized into two frameworks oriented towards causes (cradle to cradle) and effects (life cycle assessment), and these are structured under the three pillars of sustainability, for their projection within the proposed framework. Secondly, a framework is established to facilitate the implementation of the CE with the use of standards, which constitute the requirements, tools, and indicators to control each life cycle phase, and of key enabling technologies (KETs) that add circular value 4.0 to the socio-ecological transition

    Ecological active vision: four bio-inspired principles to integrate bottom-up and adaptive top-down attention tested with a simple camera-arm robot

    Get PDF
    Vision gives primates a wealth of information useful to manipulate the environment, but at the same time it can easily overwhelm their computational resources. Active vision is a key solution found by nature to solve this problem: a limited fovea actively displaced in space to collect only relevant information. Here we highlight that in ecological conditions this solution encounters four problems: 1) the agent needs to learn where to look based on its goals; 2) manipulation causes learning feedback in areas of space possibly outside the attention focus; 3) good visual actions are needed to guide manipulation actions, but only these can generate learning feedback; and 4) a limited fovea causes aliasing problems. We then propose a computational architecture ("BITPIC") to overcome the four problems, integrating four bioinspired key ingredients: 1) reinforcement-learning fovea-based top-down attention; 2) a strong vision-manipulation coupling; 3) bottom-up periphery-based attention; and 4) a novel action-oriented memory. The system is tested with a simple simulated camera-arm robot solving a class of search-and-reach tasks involving color-blob "objects." The results show that the architecture solves the problems, and hence the tasks, very ef?ciently, and highlight how the architecture principles can contribute to a full exploitation of the advantages of active vision in ecological conditions

    An earthworm-like modular soft robot for locomotion in multi-terrain environments

    Get PDF
    Robotic locomotion in subterranean environments is still unsolved, and it requires innovative designs and strategies to overcome the challenges of burrowing and moving in unstructured conditions with high pressure and friction at depths of a few centimeters. Inspired by antagonistic muscle contractions and constant volume coelomic chambers observed in earthworms, we designed and developed a modular soft robot based on a peristaltic soft actuator (PSA). The PSA demonstrates two active configurations from a neutral state by switching the input source between positive and negative pressure. PSA generates a longitudinal force for axial penetration and a radial force for anchorage, through bidirectional deformation of the central bellows-like structure, which demonstrates its versatility and ease of control. The performance of PSA depends on the amount and type of fluid confined in an elastomer chamber, generating different forces and displacements. The assembled robot with five PSA modules enabled to perform peristaltic locomotion in different media. The role of friction was also investigated during experimental locomotion tests by attaching passive scales like earthworm setae to the ventral side of the robot. This study proposes a new method for developing a peristaltic earthworm-like soft robot and provides a better understanding of locomotion in different environments

    Evomimetics : the biomimetic design thinking 2.0

    Get PDF
    The consensus is that nature is a tremendous source of ideas for innovative designs that can meet various specific functional needs, relevant to society. Designs rely on structural, constructional, process-based and behavioral traits that all result from a natural trial-and-error cycle: evolution. Being one of the pillars of biomimicry, through billion years of evolution, nature has experimented and found what works and lasts, and what does not. Evidently, this has attracted scientists, especially engineers, trying to understand working natural designs, and translate them into applicable, working synthetic designs. The 'Biomimetic Design Method' forms the underlying conceptual framework to analytically decode biologically functions and designs. However, even though the evolutionary process is considered key to all this, it is generally overlooked in this conceptual thinking. The general assumption is that particular functions in organisms result from a natural selection process that optimized the underlying design for a particular function, thereby overlooking that an organism actually represents the possibly best compromise between all its functions needed to survive, to reproduce and to produce fit offspring. Many evolutionary processes thus yield suboptimal design components that, when put together, provide an optimized organismal design that manages to perform as good as needed, within a given environment. Such evolutionary limitations thus create possible pitfalls for bio-inspired design thinking. But, when considering them as a structural part of the design thinking process ('evomimetics'), they actually create opportunities for an improved translation of biology into optimally functioning designs. Using specific examples from evolutionary biology, these processes are explained, and recommendations are formulated

    Eco‐Holonic 4.0 Circular Business Model to  Conceptualize Sustainable Value Chain Towards  Digital Transition 

    Get PDF
    The purpose of this paper is to conceptualize a circular business model based on an Eco-Holonic Architecture, through the integration of circular economy and holonic principles. A conceptual model is developed to manage the complexity of integrating circular economy principles, digital transformation, and tools and frameworks for sustainability into business models. The proposed architecture is multilevel and multiscale in order to achieve the instantiation of the sustainable value chain in any territory. The architecture promotes the incorporation of circular economy and holonic principles into new circular business models. This integrated perspective of business model can support the design and upgrade of the manufacturing companies in their respective industrial sectors. The conceptual model proposed is based on activity theory that considers the interactions between technical and social systems and allows the mitigation of the metabolic rift that exists between natural and social metabolism. This study contributes to the existing literature on circular economy, circular business models and activity theory by considering holonic paradigm concerns, which have not been explored yet. This research also offers a unique holonic architecture of circular business model by considering different levels, relationships, dynamism and contextualization (territory) aspects
    corecore