15,304 research outputs found

    Twelve Theses on Reactive Rules for the Web

    Get PDF
    Reactivity, the ability to detect and react to events, is an essential functionality in many information systems. In particular, Web systems such as online marketplaces, adaptive (e.g., recommender) systems, and Web services, react to events such as Web page updates or data posted to a server. This article investigates issues of relevance in designing high-level programming languages dedicated to reactivity on the Web. It presents twelve theses on features desirable for a language of reactive rules tuned to programming Web and Semantic Web applications

    QoS Contract Negotiation in Distributed Component-Based Software

    Get PDF
    Currently, several mature and commercial component models (for e.g. EJB, .NET, COM+) exist on the market. These technologies were designed largely for applications with business-oriented non-functional requirements such as data persistence, confidentiality, and transactional support. They provide only limited support for the development of components and applications with non-functional properties (NFPs) like QoS (e.g. throughput, response time). The integration of QoS into component infrastructure requires among other things the support of components’ QoS contract specification, negotiation, adaptation, etc. This thesis focuses on contract negotiation. For applications in which the consideration of non-functional properties (NFPs) is essential (e.g. Video-on-Demand, eCommerce), a component-based solution demands the appropriate composition of the QoS contracts specified at the different ports of the collaborating components. The ports must be properly connected so that the QoS level required by one is matched by the QoS level provided by the other. Generally, QoS contracts of components depend on run-time resources (e.g. network bandwidth, CPU time) or quality attributes to be established dynamically and are usually specified in multiple QoS-Profiles. QoS contract negotiation enables the selection of appropriate concrete QoS contracts between collaborating components. In our approach, the component containers perform the contract negotiation at run-time. This thesis addresses the QoS contract negotiation problem by first modelling it as a constraint satisfaction optimization problem (CSOP). As a basis for this modelling, the provided and required QoS as well as resource demand are specified at the component level. The notion of utility is applied to select a good solution according to some negotiation goal (e.g. user’s satisfaction). We argue that performing QoS contract negotiation in multiple phases simplifies the negotiation process and makes it more efficient. Based on such classification, the thesis presents heuristic algorithms that comprise coarse-grained and fine-grained negotiations for collaborating components deployed in distributed nodes in the following scenarios: (i) single-client - single-server, (ii) multiple-clients, and (iii) multi-tier scenarios. To motivate the problem as well as to validate the proposed approach, we have examined three componentized distributed applications. These are: (i) video streaming, (ii) stock quote, and (iii) billing (to evaluate certain security properties). An experiment has been conducted to specify the QoS contracts of the collaborating components in one of the applications we studied. In a run-time system that implements our algorithm, we simulated different behaviors concerning: (i) user’s QoS requirements and preferences, (ii) resource availability conditions concerning the client, server, and network bandwidth, and (iii) the specified QoS-Profiles of the collaborating components. Under various conditions, the outcome of the negotiation confirms the claim we made with regard to obtaining a good solution

    QoS Contract Negotiation in Distributed Component-Based Software

    Get PDF
    Currently, several mature and commercial component models (for e.g. EJB, .NET, COM+) exist on the market. These technologies were designed largely for applications with business-oriented non-functional requirements such as data persistence, confidentiality, and transactional support. They provide only limited support for the development of components and applications with non-functional properties (NFPs) like QoS (e.g. throughput, response time). The integration of QoS into component infrastructure requires among other things the support of components’ QoS contract specification, negotiation, adaptation, etc. This thesis focuses on contract negotiation. For applications in which the consideration of non-functional properties (NFPs) is essential (e.g. Video-on-Demand, eCommerce), a component-based solution demands the appropriate composition of the QoS contracts specified at the different ports of the collaborating components. The ports must be properly connected so that the QoS level required by one is matched by the QoS level provided by the other. Generally, QoS contracts of components depend on run-time resources (e.g. network bandwidth, CPU time) or quality attributes to be established dynamically and are usually specified in multiple QoS-Profiles. QoS contract negotiation enables the selection of appropriate concrete QoS contracts between collaborating components. In our approach, the component containers perform the contract negotiation at run-time. This thesis addresses the QoS contract negotiation problem by first modelling it as a constraint satisfaction optimization problem (CSOP). As a basis for this modelling, the provided and required QoS as well as resource demand are specified at the component level. The notion of utility is applied to select a good solution according to some negotiation goal (e.g. user’s satisfaction). We argue that performing QoS contract negotiation in multiple phases simplifies the negotiation process and makes it more efficient. Based on such classification, the thesis presents heuristic algorithms that comprise coarse-grained and fine-grained negotiations for collaborating components deployed in distributed nodes in the following scenarios: (i) single-client - single-server, (ii) multiple-clients, and (iii) multi-tier scenarios. To motivate the problem as well as to validate the proposed approach, we have examined three componentized distributed applications. These are: (i) video streaming, (ii) stock quote, and (iii) billing (to evaluate certain security properties). An experiment has been conducted to specify the QoS contracts of the collaborating components in one of the applications we studied. In a run-time system that implements our algorithm, we simulated different behaviors concerning: (i) user’s QoS requirements and preferences, (ii) resource availability conditions concerning the client, server, and network bandwidth, and (iii) the specified QoS-Profiles of the collaborating components. Under various conditions, the outcome of the negotiation confirms the claim we made with regard to obtaining a good solution

    Forum Session at the First International Conference on Service Oriented Computing (ICSOC03)

    Get PDF
    The First International Conference on Service Oriented Computing (ICSOC) was held in Trento, December 15-18, 2003. The focus of the conference ---Service Oriented Computing (SOC)--- is the new emerging paradigm for distributed computing and e-business processing that has evolved from object-oriented and component computing to enable building agile networks of collaborating business applications distributed within and across organizational boundaries. Of the 181 papers submitted to the ICSOC conference, 10 were selected for the forum session which took place on December the 16th, 2003. The papers were chosen based on their technical quality, originality, relevance to SOC and for their nature of being best suited for a poster presentation or a demonstration. This technical report contains the 10 papers presented during the forum session at the ICSOC conference. In particular, the last two papers in the report ere submitted as industrial papers

    Application of service composition mechanisms to Future Networks architectures and Smart Grids

    Get PDF
    Aquesta tesi gira entorn de la hipòtesi de la metodologia i mecanismes de composició de serveis i com es poden aplicar a diferents camps d'aplicació per a orquestrar de manera eficient comunicacions i processos flexibles i sensibles al context. Més concretament, se centra en dos camps d'aplicació: la distribució eficient i sensible al context de contingut multimèdia i els serveis d'una xarxa elèctrica intel·ligent. En aquest últim camp es centra en la gestió de la infraestructura, cap a la definició d'una Software Defined Utility (SDU), que proposa una nova manera de gestionar la Smart Grid amb un enfocament basat en programari, que permeti un funcionament molt més flexible de la infraestructura de xarxa elèctrica. Per tant, revisa el context, els requisits i els reptes, així com els enfocaments de la composició de serveis per a aquests camps. Fa especial èmfasi en la combinació de la composició de serveis amb arquitectures Future Network (FN), presentant una proposta de FN orientada a serveis per crear comunicacions adaptades i sota demanda. També es presenten metodologies i mecanismes de composició de serveis per operar sobre aquesta arquitectura, i posteriorment, es proposa el seu ús (en conjunció o no amb l'arquitectura FN) en els dos camps d'estudi. Finalment, es presenta la investigació i desenvolupament realitzat en l'àmbit de les xarxes intel·ligents, proposant diverses parts de la infraestructura SDU amb exemples d'aplicació de composició de serveis per dissenyar seguretat dinàmica i flexible o l'orquestració i gestió de serveis i recursos dins la infraestructura de l'empresa elèctrica.Esta tesis gira en torno a la hipótesis de la metodología y mecanismos de composición de servicios y cómo se pueden aplicar a diferentes campos de aplicación para orquestar de manera eficiente comunicaciones y procesos flexibles y sensibles al contexto. Más concretamente, se centra en dos campos de aplicación: la distribución eficiente y sensible al contexto de contenido multimedia y los servicios de una red eléctrica inteligente. En este último campo se centra en la gestión de la infraestructura, hacia la definición de una Software Defined Utility (SDU), que propone una nueva forma de gestionar la Smart Grid con un enfoque basado en software, que permita un funcionamiento mucho más flexible de la infraestructura de red eléctrica. Por lo tanto, revisa el contexto, los requisitos y los retos, así como los enfoques de la composición de servicios para estos campos. Hace especial hincapié en la combinación de la composición de servicios con arquitecturas Future Network (FN), presentando una propuesta de FN orientada a servicios para crear comunicaciones adaptadas y bajo demanda. También se presentan metodologías y mecanismos de composición de servicios para operar sobre esta arquitectura, y posteriormente, se propone su uso (en conjunción o no con la arquitectura FN) en los dos campos de estudio. Por último, se presenta la investigación y desarrollo realizado en el ámbito de las redes inteligentes, proponiendo varias partes de la infraestructura SDU con ejemplos de aplicación de composición de servicios para diseñar seguridad dinámica y flexible o la orquestación y gestión de servicios y recursos dentro de la infraestructura de la empresa eléctrica.This thesis revolves around the hypothesis the service composition methodology and mechanisms and how they can be applied to different fields of application in order to efficiently orchestrate flexible and context-aware communications and processes. More concretely, it focuses on two fields of application that are the context-aware media distribution and smart grid services and infrastructure management, towards a definition of a Software-Defined Utility (SDU), which proposes a new way of managing the Smart Grid following a software-based approach that enable a much more flexible operation of the power infrastructure. Hence, it reviews the context, requirements and challenges of these fields, as well as the service composition approaches. It makes special emphasis on the combination of service composition with Future Network (FN) architectures, presenting a service-oriented FN proposal for creating context-aware on-demand communication services. Service composition methodology and mechanisms are also presented in order to operate over this architecture, and afterwards, proposed for their usage (in conjunction or not with the FN architecture) in the deployment of context-aware media distribution and Smart Grids. Finally, the research and development done in the field of Smart Grids is depicted, proposing several parts of the SDU infrastructure, with examples of service composition application for designing dynamic and flexible security for smart metering or the orchestration and management of services and data resources within the utility infrastructure

    On-Demand Composition of Smart Service Systems in Decentralized Environments

    Get PDF
    The increasing number of smart systems inevitably leads to a huge number of systems that potentially provide independently designed, autonomously operating services. In near-future smart computing systems, such as smart cities, smart grids or smart mobility, independently developed and heterogeneous services need to be dynamically interconnected in order to develop their full potential in a rather complex collaboration with others. Since the services are developed independently, it is challenging to integrate them on-the-fly at run time. Due to the increasing degree of distribution, such systems operate in a decentralized and volatile environment, where central management is infeasible. Conversely, the increasing computational power of such systems also supersedes the need for central management. The four identified key problems of adaptable, collaborative Smart Service Systems are on-demand composition of complex service structures in decentralized environments, the absence of a comprehensive, serendipity-aware specification, a discontinuity from design-time specification to run-time execution, and the lack of a development methodology that separates the development of a service from that of its role essential to a collaboration. This approach utilizes role-based models, which have a collaborative nature, for automated, on-demand service composition. A rigorous two-phase development methodology is proposed in order to demarcate the development of the services from that of their role essential to a collaboration. Therein, a collaboration designer specifies the collaboration including its abstract functionality using the proposed role-based collaboration specification for Smart Service Systems. Thereof, a partial implementation is derived, which is complemented by services developed in the second phase. The proposed middleware architecture provides run-time support and bridges the gap between design and run time. It implements a protocol for coordinated, role-based composition and adaptation of Smart Service Systems. The approach is quantitatively and qualitatively evaluated by means of a case study and a performance evaluation in order to identify limitations of complex service structures and the trade-off of employing the concept of roles for composition and adaptation of Smart Service Systems.:1 Introduction 1.1 Motivation 1.2 Terminology 1.3 Problem Statement 1.4 Requirements Analysis 1.5 Research Questions and Hypothesis 1.6 Focus and Limitations 1.7 Outline 2 The Role Concept in Computer Science 2.1 What is a Role in Computer Science? 2.2 Roles in RoleDiSCo 3 State of the Art & Related Work 3.1 Role-based Modeling Abstractions for Software Systems 3.1.1 Classification 3.1.2 Approaches 3.1.3 Summary 3.2 Role-based Run-Time Systems 3.2.1 Classification 3.2.2 Approaches 3.2.3 Summary 3.3 Spontaneously Collaborating Run-Time Systems 3.3.1 Classification 3.3.2 Approaches 3.3.3 Summary 3.4 Summary 4 On-Demand Composition and Adaptation of Smart Service Systems 4.1 RoleDiSCo Development Methodology 4.1.1 Role-based Collaboration Specification for Smart Service Systems 4.1.2 Derived Partial Implementation 4.1.3 Player & Context Provision 4.2 RoleDiSCo Middleware Architecture for Smart Service Systems 4.2.1 Infrastructure Abstraction Layer 4.2.2 Context Management 4.2.3 Local Repositories & Knowledge 4.2.4 Discovery 4.2.5 Dispatcher 4.3 Coordinated Composition and Subsequent Adaptation 4.3.1 Initialization and Planning 4.3.2 Composition: Coordinating Subsystem 4.3.3 Composition: Non-Coordinating Subsystem 4.3.4 Competing Collaborations & Negotiation 4.3.5 Subsequent Adaptation 4.3.6 Terminating a Pervasive Collaboration 4.4 Summary 5 Implementing RoleDiSCo 5.1 RoleDiSCo Development Support 5.2 RoleDiSCo Middleware 5.2.1 Infrastructure Abstraction Layer 5.2.2 Knowledge Repositories and Local Class Discovery 5.2.3 Planner 6 Evaluation 6.1 Case Study: Distributed Slideshow 6.1.1 Scenario 6.1.2 Phase 1: Collaboration Design 6.1.3 Phase 2: Player Complementation 6.1.4 Coordinated Composition and Adaptation at Run Time 6.2 Runtime Evaluation 6.2.1 General Testbed Setup and Scenarios 6.2.2 Discovery Time 6.2.3 Composition Time 6.2.4 Discussion 6.3 The ›Role‹ of Roles 6.4 Summary 7 Conclusion 7.1 Summary 7.2 Research Results 7.3 Future Wor
    corecore