12,867 research outputs found

    Planning Graph Heuristics for Belief Space Search

    Full text link
    Some recent works in conditional planning have proposed reachability heuristics to improve planner scalability, but many lack a formal description of the properties of their distance estimates. To place previous work in context and extend work on heuristics for conditional planning, we provide a formal basis for distance estimates between belief states. We give a definition for the distance between belief states that relies on aggregating underlying state distance measures. We give several techniques to aggregate state distances and their associated properties. Many existing heuristics exhibit a subset of the properties, but in order to provide a standardized comparison we present several generalizations of planning graph heuristics that are used in a single planner. We compliment our belief state distance estimate framework by also investigating efficient planning graph data structures that incorporate BDDs to compute the most effective heuristics. We developed two planners to serve as test-beds for our investigation. The first, CAltAlt, is a conformant regression planner that uses A* search. The second, POND, is a conditional progression planner that uses AO* search. We show the relative effectiveness of our heuristic techniques within these planners. We also compare the performance of these planners with several state of the art approaches in conditional planning

    Sharing emotions and space - empathy as a basis for cooperative spatial interaction

    Get PDF
    Boukricha H, Nguyen N, Wachsmuth I. Sharing emotions and space - empathy as a basis for cooperative spatial interaction. In: Kopp S, Marsella S, Thorisson K, Vilhjalmsson HH, eds. Proceedings of the 11th International Conference on Intelligent Virtual Agents (IVA 2011). LNAI. Vol 6895. Berlin, Heidelberg: Springer; 2011: 350-362.Empathy is believed to play a major role as a basis for humans’ cooperative behavior. Recent research shows that humans empathize with each other to different degrees depending on several modulation factors including, among others, their social relationships, their mood, and the situational context. In human spatial interaction, partners share and sustain a space that is equally and exclusively reachable to them, the so-called interaction space. In a cooperative interaction scenario of relocating objects in interaction space, we introduce an approach for triggering and modulating a virtual humans cooperative spatial behavior by its degree of empathy with its interaction partner. That is, spatial distances like object distances as well as distances of arm and body movements while relocating objects in interaction space are modulated by the virtual human’s degree of empathy. In this scenario, the virtual human’s empathic emotion is generated as a hypothesis about the partner’s emotional state as related to the physical effort needed to perform a goal directed spatial behavior

    Grasping bulky objects with two anthropomorphic hands

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis paper presents an algorithm to compute precision grasps for bulky objects using two anthropomorphic hands. We use objects modeled as point clouds obtained from a sensor camera or from a CAD model. We then process the point clouds dividing them into two set of slices where we look for sets of triplets of points. Each triplet must accomplish some physical conditions based on the structure of the hands. Then, the triplets of points from each set of slices are evaluated to find a combination that satisfies the force closure condition (FC). Once one valid couple of triplets have been found the inverse kinematics of the system is computed in order to know if the corresponding points are reachable by the hands, if so, motion planning and a collision check are performed to asses if the final grasp configuration of the system is suitable. The paper inclu des some application examples of the proposed approachAccepted versio
    corecore