96,514 research outputs found

    GOPlan: Goal-conditioned Offline Reinforcement Learning by Planning with Learned Models

    Full text link
    Offline goal-conditioned RL (GCRL) offers a feasible paradigm to learn general-purpose policies from diverse and multi-task offline datasets. Despite notable recent progress, the predominant offline GCRL methods have been restricted to model-free approaches, constraining their capacity to tackle limited data budgets and unseen goal generalization. In this work, we propose a novel two-stage model-based framework, Goal-conditioned Offline Planning (GOPlan), including (1) pretraining a prior policy capable of capturing multi-modal action distribution within the multi-goal dataset; (2) employing the reanalysis method with planning to generate imagined trajectories for funetuning policies. Specifically, the prior policy is based on an advantage-weighted Conditioned Generative Adversarial Networks that exhibits distinct mode separation to overcome the pitfalls of out-of-distribution (OOD) actions. For further policy optimization, the reanalysis method generates high-quality imaginary data by planning with learned models for both intra-trajectory and inter-trajectory goals. Through experimental evaluations, we demonstrate that GOPlan achieves state-of-the-art performance on various offline multi-goal manipulation tasks. Moreover, our results highlight the superior ability of GOPlan to handle small data budgets and generalize to OOD goals.Comment: Spotlight Presentation at Goal-conditioned Reinforcement Learning Workshop at NeurIPS, 202

    Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in Latent Space

    Full text link
    General-purpose robots require diverse repertoires of behaviors to complete challenging tasks in real-world unstructured environments. To address this issue, goal-conditioned reinforcement learning aims to acquire policies that can reach configurable goals for a wide range of tasks on command. However, such goal-conditioned policies are notoriously difficult and time-consuming to train from scratch. In this paper, we propose Planning to Practice (PTP), a method that makes it practical to train goal-conditioned policies for long-horizon tasks that require multiple distinct types of interactions to solve. Our approach is based on two key ideas. First, we decompose the goal-reaching problem hierarchically, with a high-level planner that sets intermediate subgoals using conditional subgoal generators in the latent space for a low-level model-free policy. Second, we propose a hybrid approach which first pre-trains both the conditional subgoal generator and the policy on previously collected data through offline reinforcement learning, and then fine-tunes the policy via online exploration. This fine-tuning process is itself facilitated by the planned subgoals, which breaks down the original target task into short-horizon goal-reaching tasks that are significantly easier to learn. We conduct experiments in both the simulation and real world, in which the policy is pre-trained on demonstrations of short primitive behaviors and fine-tuned for temporally extended tasks that are unseen in the offline data. Our experimental results show that PTP can generate feasible sequences of subgoals that enable the policy to efficiently solve the target tasks

    ARNOLD: A Benchmark for Language-Grounded Task Learning With Continuous States in Realistic 3D Scenes

    Full text link
    Understanding the continuous states of objects is essential for task learning and planning in the real world. However, most existing task learning benchmarks assume discrete(e.g., binary) object goal states, which poses challenges for the learning of complex tasks and transferring learned policy from simulated environments to the real world. Furthermore, state discretization limits a robot's ability to follow human instructions based on the grounding of actions and states. To tackle these challenges, we present ARNOLD, a benchmark that evaluates language-grounded task learning with continuous states in realistic 3D scenes. ARNOLD is comprised of 8 language-conditioned tasks that involve understanding object states and learning policies for continuous goals. To promote language-instructed learning, we provide expert demonstrations with template-generated language descriptions. We assess task performance by utilizing the latest language-conditioned policy learning models. Our results indicate that current models for language-conditioned manipulations continue to experience significant challenges in novel goal-state generalizations, scene generalizations, and object generalizations. These findings highlight the need to develop new algorithms that address this gap and underscore the potential for further research in this area. See our project page at: https://arnold-benchmark.github.ioComment: The first two authors contributed equally; 20 pages; 17 figures; project availalbe: https://arnold-benchmark.github.io
    • …
    corecore