434 research outputs found

    Relay Technologies in IEEE 802.16j Mobile Multi-hop Relay (MMR) Networks

    Get PDF
    IEEE 802.16 standard is created to compete with cable access networks. In the beginning end users are immobile and have a line of sight with base station, now it moved to mobile non line of sight (NLOS) with the new standard IEEE 802.16e and IEEE 802.16j. The new IEEE 802.16j standard which is an amendment to IEEE 802.16e is mobile multi hop relay (MMR) specification for wireless networks. This paper discusses relay modes, relay transmission schemes and relay pairing schemes of IEEE 802.16j. Relay technologies such as transparent relay modes, non transparent relay mode, relay pairing schemes such as centralized relay pairing schemes, distributed relay pairing scheme, characterises of relay based networks such as throughput enhancement, capacity increase, cost reduction , relay techniques such as time domain frequency domain relay techniques and relay placement are also discussed in this paper. The paper also discusses about integration of IEEE 802.16j with IEEE 802.11. Keywords: IEEE 802.16j, Relay pairing schemes, relay techniques, Relay modes, WIMAX, NCTUns, et

    Traffic Sensitive and Traffic Load Aware Path Selection Algorithm For MMR WIMAX Networks

    Get PDF
    The recent developments in the broadband wireless access (BWA) communication systems have introduced several major changes to the existing systems. Legacy IEEE 802.16j is one such amendment to the existing IEEE 802.16 WiMAX family. The key modification introduced by 802.16j system is the concept of relay station (RS), which may be used to enhance the system coverage or to make system throughput optimal. The end terminals, subscriber stations (SS) are unchanged in the standard. The overall change pertinent to the system has raised many unresolved issues related to RS and multi-hop relay base station (MR-BS). The selection of path from a SS to MR-BS via a RS is also one of the issues, need to be addressed. The path selection of a SS in both uplink and downlink directions is left open in the standard. It is very significant to satisfy the traffics of stringent quality of service (QoS) requirements and to appropriately manage the resources of a cell under different circumstances. This paper proposes a path selection algorithm to achieve the aforementioned qualities in the network. The path selection metrics include traffic load of the transparent relay station and traffic sensitivity factor of the SS. An extensive simulation work discusses the performance evaluation of the proposed work using QualNet simulator

    Medium access control and network planning in wireless networks

    Get PDF
    Wireless Local Area Networks (WLANs) and Wireless Metropolitan Area Networks (WMANs) are two of the main technologies in wireless data networks. WLANs have a short range and aim at providing connectivity to end users. On the other hand, WMANs have a long range and aim at serving as a backbone network and also at serving end users. In this dissertation, we consider the problem of Medium Access Control (MAC) in WLANs and the placement of Relay Stations (RSs) in WMANs. We propose a MAC scheme for WLANs in which stations contend by using jams on the channel. We present analytic and simulation results to find the optimal parameters of the scheme and measure its performance. Our scheme has a low collision rate and delay and a high throughput and fairness performance. Secondly, we present a MAC scheme for the latest generation of WLANs which have very high data rates. In this scheme, we divide the stations into groups and only one station from each group contends to the channel. We also use frame aggregation to reduce the overhead. We present analytic and simulation results which show that our scheme provides a small collision rate and, hence, achieves a high throughput. The results also show that our scheme provides a delay performance that is suitable for real-time applications and also has a high level of fairness. Finally, we consider the problem of placing Relay Stations (RSs) in WMANs. We consider the Worldwide Interoperability for Microwave Access (WIMAX) technology. The RSs are used to increase the capacity of the network and to extend its range. We present an optimization formulation that places RSs in the WiMAX network to serve a number of customers with a pre-defined bit rate. Our solution also provides fault-tolerance by allowing one RS to fail at a given time so that the performance to the users remains at a predictable level. The goal of our solution is to meet the demands of the users, provide fault-tolerance and minimize the number of RSs used

    Cooperative control of relay based cellular networks

    Get PDF
    PhDThe increasing popularity of wireless communications and the higher data requirements of new types of service lead to higher demands on wireless networks. Relay based cellular networks have been seen as an effective way to meet users’ increased data rate requirements while still retaining the benefits of a cellular structure. However, maximizing the probability of providing service and spectrum efficiency are still major challenges for network operators and engineers because of the heterogeneous traffic demands, hard-to-predict user movements and complex traffic models. In a mobile network, load balancing is recognised as an efficient way to increase the utilization of limited frequency spectrum at reasonable costs. Cooperative control based on geographic load balancing is employed to provide flexibility for relay based cellular networks and to respond to changes in the environment. According to the potential capability of existing antenna systems, adaptive radio frequency domain control in the physical layer is explored to provide coverage at the right place at the right time. This thesis proposes several effective and efficient approaches to improve spectrum efficiency using network wide optimization to coordinate the coverage offered by different network components according to the antenna models and relay station capability. The approaches include tilting of antenna sectors, changing the power of omni-directional antennas, and changing the assignment of relay stations to different base stations. Experiments show that the proposed approaches offer significant improvements and robustness in heterogeneous traffic scenarios and when the propagation environment changes. The issue of predicting the consequence of cooperative decisions regarding antenna configurations when applied in a realistic environment is described, and a coverage prediction model is proposed. The consequences of applying changes to the antenna configuration on handovers are analysed in detail. The performance evaluations are based on a system level simulator in the context of Mobile WiMAX technology, but the concepts apply more generally

    Network Planning for IEEE 802.16j Relay Networks

    Get PDF
    In this chapter, a problem formulation for determining the optimal node location for base stations (BSs) and relay stations (RSs) in relay-based 802.16 networks is developed. A number of techniques are proposed to solve the resulting integer programming (IP) problem—these are compared in terms of the time taken to find a solution and the quality of the solution obtained. Finally, there is some analysis of the impact of the ratio of BS/RS costs on the solutions obtained. Three techniques are studied to solve the IP problem: (1) a standard branch and bound mechanism, (2) an approach in which state space reduction techniques are applied in advance of the branch and bound algorithm, and (3) a clustering approach in which the problem is divided into a number of subproblems which are solved separately, followed by a final overall optimization step. These different approaches were used to solve the problem. The results show that the more basic approach can be used to solve problems for small metropolitan areas; the state space reduction technique reduces the time taken to find a solution by about 50 percent. Finally, the clustering approach can be used to find solutions of approximately equivalent quality in about 30 percent of the time required in the first case. After scalability tests were performed, some rudimentary experiments were performed in which the ratio of BS/RS cost was varied. The initial results show that for the scenarios studied, reducing the RS costs results in more RSs in the solution, while also decreasing the power required to communicate from the mobile device to its closest infrastructure node (BS or RS)

    Practical design of optimal wireless metropolitan area networks: model and algorithms for OFDMA networks

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Ph.D.This thesis contributes to the study of the planning and optimisation of wireless metropolitan area networks, in particular to the access network design of OFDMAbased systems, where different parameters like base station position, antenna tilt and azimuth need to be configured during the early stages of the network life. A practical view for the solution of this problem is presented by means of the development of a novel design framework and the use of multicriteria optimisation. A further consideration of relaying and cooperative communications in the context of the design of this kind of networks is done, an area little researched. With the emergence of new technologies and services, it is very important to accurately identify the factors that affect the design of the wireless access network and define how to take them into account to achieve optimally performing and cost-efficient networks. The new features and flexibility of OFDMA networks seem particularly suited to the provision of different broadband services to metropolitan areas. However, until now, most existing efforts have been focused on the basic access capability networks. This thesis presents a way to deal with the trade-offs generated during the OFDMA access network design, and presents a service-oriented optimization framework that offers a new perspective for this process with consideration of the technical and economic factors. The introduction of relay stations in wireless metropolitan area networks will bring numerous advantages such as coverage extension and capacity enhancement due to the deployment of new cells and the reduction of distance between transmitter and receiver. However, the network designers will also face new challenges with the use of relay stations, since they involve a new source of interference and a complicated air interface; and this need to be carefully evaluated during the network design process. Contrary to the well known procedure of cellular network design over regular or hexagonal scenarios, the wireless network planning and optimization process aims to deal with the non-uniform characteristics of realistic scenarios, where the existence of hotspots, different channel characteristics for the users, or different service requirements will determine the final design of the wireless network. This thesis is structured in three main blocks covering important gaps in the existing literature in planning (efficient simulation) and optimisation. The formulation and ideas proposed in the former case can still be evaluated over regular scenarios, for the sake of simplicity, while the study of latter case needs to be done over specific scenarios that will be described when appropriate. Nevertheless, comments and conclusions are extrapolated to more general cases throughout this work. After an introduction and a description of the related work, this thesis first focuses on the study of models and algorithms for classical point-to-multipoint networks on Chapter 3, where the optimisation framework is proposed. Based on the framework, this work: - Identifies the technology-specific physical factors that affect most importantly the network system level simulation, planning and optimization process. - It demonstrates how to simplify the problem and translate it into a formal optimization routine with consideration of economic factors. - It provides the network provider, a detailed and clear description of different scenarios during the design process so that the most suitable solution can be found. Existing works on this area do not provide such a comprehensive framework. In Chapter 4: - The impact of the relay configuration on the network planning process is analysed. - A new simple and flexible scheme to integrate multihop communications in the Mobile WiMAX frame structure is proposed and evaluated. - Efficient capacity calculations that allow intensive system level simulations in a multihop environment are introduced. In Chapter 5: - An analysis of the optimisation procedure with the addition of relay stations and the derived higher complexity of the process is done. - A frequency plan procedure not found in the existing literature is proposed, which combines it with the use of the necessary frame fragmentation of in-band relay communications and cooperative procedures. - A novel joint two-step process for network planning and optimisation is proposed. Finally, conclusions and open issues are exposed

    Handover analysis over mobile WiMAX technology.

    Get PDF
    As new mobile devices and mobile applications continue to growth, so does the data traffic demand for broadband services access and the user needs toward mobility, thereby, wireless application became today the fastest solution and lowest cost implementation unlike traditional wired deployment such as optical fibers and digital lines. WiMAX technology satisfies this gap through its high network performance over the air interface and high data rates based on the IEEE 802.16-2004 standards, this original specification does not support mobility. Therefore, the IEEE introduces a new standard that enables mobility profiles under 802.16e-2005, from which three different types of handovers process are introduced as hard handover (HHO), macro diversity handover (MDHO) and fast base station switching (FBSS) handover. The objective of this master thesis is to analyze how the handover process affects network performance. The analysis propose three scenarios, built over OPNET simulator to measure the most critical wireless parameter and performance indicator such as throughput, handover success rate, packet drop, delay and network usage.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Adaptive frame structure and OFDMA resource allocation in mobile multi-hop relay networks

    Get PDF
    The objective of this thesis research is to optimize network throughput and fairness, and enhance bandwidth utilization in wireless mobile multi-hop relay (MMR) networks. To enhance bandwidth utilization, we propose an adaptive OFDMA frame structure which is used by the base station and the non-transparent relay stations. To optimize throughput and fairness, we develop an adaptive OFDMA allocation algorithm by using the proposed adaptive OFDMA frame. The effectiveness of the proposed schemes has been verified by numeric simulations. Providing ubiquitous coverage with wireless metropolitan area networks (WMANs) can be costly, especially in sparsely populated areas. In this scenario, cheaper relay stations (RSs) can be used to provide coverage instead of expensive base stations (BSs). The RS extends the coverage area of traditional BSs. This sort of network is known as a wireless MMR network. This thesis focuses on MMR networks that use orthogonal frequency division multiple access (OFDMA) and time division duplex (TDD) as a multiple access scheme and a duplex communication technique (e.g., WiMAX). The use of OFDMA resources (e.g., OFDMA symbols and subcarriers) and how they are shared in current schemes can reduce system capacity and network throughput in certain scenarios. To increase the capacity of the MMR network, we propose a new protocol that uses an adaptive OFDMA frame structure for BSs and RSs. We also propose adaptive OFDMA resource allocation for subscriber stations (SSs) within a BS or RS. We derive the maximum OFDMA resources that RSs can be assigned and synchronize access zones and relay zones between a superior station and its subordinate RSs. This is bounded by three properties defined in this thesis: a data relay property, a maximum balance property, and a relay zone limitation property. Finally, we propose max-min and proportional fairness schemes that use the proposed adaptive frame structure. The proposed scheme is the first approach that incorporates the adaptive technique for wireless MMR networks. We evaluate our scheme using simulations and numerical analysis. Results show that our technique improves resource allocation in wireless MMR networks. Further, in asymmetric distributions of SSs between access zones and relay zones, the proposed OFDMA allocation scheme performs two times better than the non-adaptive allocation scheme in terms of average max-min fairness and 70% better in terms of average throughput.Ph.D.Committee Chair: Dr. John A. Copeland; Committee Member: Dr. George F. Riley; Committee Member: Dr. Henry L. Owen; Committee Member: Dr. Mary Ann Ingram; Committee Member: Dr. Patrick Trayno

    Multi-cell Coordination Techniques for DL OFDMA Multi-hop Cellular Networks

    Get PDF
    The main objective of this project is to design coordinated spectrum sharing and reuse techniques among cells with the goal of mitigating interference at the cell edge and enhance the overall system capacity. The performance of the developed algorithm will be evaluated in an 802.16m (WiMAX) environment. In conventional cellular networks, frequency planning is usually considered to keep an acceptable signal-to-interference-plus noise ratio (SINR) level, especially at cell boundaries. Frequency assignations are done under a cell-by-cell basis, without any coordination between them to manage interference. Particularly this approach, however, hampers the system spectral efficiency at low reuse rates. For a specific reuse factor, the system throughput depends highly on the mobile station (MS) distribution and the channel conditions of the users to be served. If users served from different base stations (BS) experience a low level of interference, radio resources may be reused, applying a high reuse factor and thus, increasing the system spectral efficiency. On the other side, if the served users experience large interference, orthogonal transmissions are better and therefore a lower frequency reuse factor should be used. As a consequence, a dynamic reuse factor is preferable over a fixed one. This work addresses the design of joint multi-cell resource allocation and scheduling with coordination among neighbouring base stations (outer coordination) or sectors belonging to the same one (inner coordination) as a way to achieve flexible reuse factors. We propose a convex optimization framework to address the problem of coordinating bandwidth allocation in BS coordination problems. The proposed framework allows for different scheduling policies, which have an impact on the suitability of the reuse factor, since they determine which users have to be served. Therefore, it makes sense to consider the reuse factor as a result of the scheduling decision. To support the proposed techniques the BSs shall be capable of exchanging information with each other (decentralized approach) or with some control element in the back-haul network as an ASN gateway or some self-organization control entity (centralized approach)
    corecore