752 research outputs found

    Exploring the effects of robotic design on learning and neural control

    Full text link
    The ongoing deep learning revolution has allowed computers to outclass humans in various games and perceive features imperceptible to humans during classification tasks. Current machine learning techniques have clearly distinguished themselves in specialized tasks. However, we have yet to see robots capable of performing multiple tasks at an expert level. Most work in this field is focused on the development of more sophisticated learning algorithms for a robot's controller given a largely static and presupposed robotic design. By focusing on the development of robotic bodies, rather than neural controllers, I have discovered that robots can be designed such that they overcome many of the current pitfalls encountered by neural controllers in multitask settings. Through this discovery, I also present novel metrics to explicitly measure the learning ability of a robotic design and its resistance to common problems such as catastrophic interference. Traditionally, the physical robot design requires human engineers to plan every aspect of the system, which is expensive and often relies on human intuition. In contrast, within the field of evolutionary robotics, evolutionary algorithms are used to automatically create optimized designs, however, such designs are often still limited in their ability to perform in a multitask setting. The metrics created and presented here give a novel path to automated design that allow evolved robots to synergize with their controller to improve the computational efficiency of their learning while overcoming catastrophic interference. Overall, this dissertation intimates the ability to automatically design robots that are more general purpose than current robots and that can perform various tasks while requiring less computation.Comment: arXiv admin note: text overlap with arXiv:2008.0639

    Development of Motion Control Systems for Hydraulically Actuated Cranes with Hanging Loads

    Get PDF
    Automation has been used in industrial processes for several decades to increase efficiency and safety. Tasks that are either dull, dangerous, or dirty can often be performed by machines in a reliable manner. This may provide a reduced risk to human life, and will typically give a lower economic cost. Industrial robots are a prime example of this, and have seen extensive use in the automotive industry and manufacturing plants. While these machines have been employed in a wide variety of industries, heavy duty lifting and handling equipment such as hydraulic cranes have typically been manually operated. This provides an opportunity to investigate and develop control systems to push lifting equipment towards the same level of automation found in the aforementioned industries. The use of winches and hanging loads on cranes give a set of challenges not typically found on robots, which requires careful consideration of both the safety aspect and precision of the pendulum-like motion. Another difference from industrial robots is the type of actuation systems used. While robots use electric motors, the cranes discussed in this thesis use hydraulic cylinders. As such, the dynamics of the machines and the control system designmay differ significantly. In addition, hydraulic cranes may experience significant deflection when lifting heavy loads, arising from both structural flexibility and the compressibility of the hydraulic fluid. The work presented in this thesis focuses on motion control of hydraulically actuated cranes. Motion control is an important topic when developing automation systems, as moving from one position to another is a common requirement for automated lifting operations. A novel path controller operating in actuator space is developed, which takes advantage of the load-independent flow control valves typically found on hydraulically actuated cranes. By operating in actuator space the motion of each cylinder is inherently minimized. To counteract the pendulum-like motion of the hanging payload, a novel anti-swing controller is developed and experimentally verified. The anti-swing controller is able to suppress the motion from the hanging load to increase safety and precision. To tackle the challenges associated with the flexibility of the crane, a deflection compensator is developed and experimentally verified. The deflection compensator is able to counteract both the static deflection due to gravity and dynamic de ection due to motion. Further, the topic of adaptive feedforward control of pressure compensated cylinders has been investigated. A novel adaptive differential controller has been developed and experimentally verified, which adapts to system uncertainties in both directions of motion. Finally, the use of electro-hydrostatic actuators for motion control of cranes has been investigated using numerical time domain simulations. A novel concept is proposed and investigated using simulations.publishedVersio

    Concurrent design and motion planning in robotics using differentiable optimal control

    Get PDF
    Robot design optimization (what the robot is) and motion planning (how the robot moves) are two problems that are connected. Robots are limited by their design in terms of what motions they can execute – for instance a robot with a heavy base has less payload capacity compared to the same robot with a lighter base. On the other hand, the motions that the robot executes guide which design is best for the task. Concurrent design (co-design) is the process of performing robot design and motion planning together. Although traditionally co-design has been viewed as an offline process that can take hours or days, we view interactive co-design tools as the next step as they enable quick prototyping and evaluation of designs across different tasks and environments. In this thesis we adopt a gradient-based approach to co-design. Our baseline approach embeds the motion planning into bi-level optimization and uses gradient information via finite differences from the lower motion planning level to optimize the design in the upper level. Our approach uses the full rigid-body dynamics of the robot and allows for arbitrary upper-level design constraints, which is key for finding physically realizable designs. Our approach is also between 1.8 and 8.4 times faster on a quadruped trotting and jumping co-design task as compared to the popular genetic algorithm covariance matrix adaptation evolutionary strategy (CMA-ES). We further demonstrate the speed of our approach by building an interactive co-design tool that allows for optimization over uneven terrain with varying height. Furthermore, we propose an algorithm to analytically take the derivative of nonlinear optimal control problems via differential dynamic programming (DDP). Analytical derivatives are a step towards addressing the scalability and accuracy issues of finite differences. We further compared with a simultaneous approach for co-design that optimizes both motion and design in one nonlinear program. On a co-design task for the Kinova robotic arm we observed a 54-times improvement in computational speed. We additionally carry out hardware validation experiments on the quadruped robot Solo. We designed longer lower legs for the robot, which minimize the peak torque used during trotting. Although we always observed an improvement in peak torque, it was less than in simulation (7.609% versus 28.271%). We discuss some of the sim-toreal issues including the structural stability of joints and slipping of feet that need to be considered and how they can be addressed using our framework. In the second part of this thesis we propose solutions to some open problems in motion planning. Firstly, in our co-design approach we assumed fixed contact locations and timings. Ideally we would like the motion planner to choose the contacts instead. We solve a related, but simpler problem, which is the control of satellite thrusters, which are similar to robot feet but do not have the constraint of having to be in contact with the ground to exert force on the robot. We introduce a sparse, L1 cost on control inputs (thrusters) and implement optimization via DDP-style solvers. We use full rigid-body dynamics and achieve bang-bang control via optimization, which is a difficult problem due to the discrete switching nature of the thrusters. Lastly, we present a method for planning and control of a hybrid, wheel-legged robot. This is a difficult problem, as the robot needs to always actively balance on the wheel even when not driving or jumping forward. We propose the variablelength wheeled inverted pendulum (VL-WIP) template model that captures only the necessary dynamic interactions between wheels and base. We embedded this into a model-predictive controller (MPC) and demonstrated highly dynamic behaviors, including swinging-up and jumping over a gap. Both of these motion planning problems expand the ability of our motion planning tools to new domains, which is an integral part also of the co-design algorithms, as co-design aims to optimize both design, and motion, together

    Design and Development of Biofeedback Stick Technology (BfT) to Improve the Quality of Life of Walking Stick Users

    Get PDF
    Biomedical engineering has seen a rapid growth in recent times, where the aim to facilitate and equip humans with the latest technology has become widespread globally. From high-tech equipment ranging from CT scanners, MRI equipment, and laser treatments, to the design, creation, and implementation of artificial body parts, the field of biomedical engineering has significantly contributed to mankind. Biomedical engineering has facilitated many of the latest developments surrounding human mobility, with advancement in mobility aids improving human movement for people with compromised mobility either caused by an injury or health condition. A review of the literature indicated that mobility aids, especially walking sticks, and appropriate training for their use, are generally prescribed by allied health professionals (AHP) to walking stick users for rehabilitation and activities of daily living (ADL). However, feedback from AHP is limited to the clinical environment, leaving walking stick users vulnerable to falls and injuries due to incorrect usage. Hence, to mitigate the risk of falls and injuries, and to facilitate a routine appraisal of individual patient’s usage, a simple, portable, robust, and reliable tool was developed which provides the walking stick users with real-time feedback upon incorrect usage during their activities of daily living (ADL). This thesis aimed to design and develop a smart walking stick technology: Biofeedback stick technology (BfT). The design incorporates the approach of patient and public involvement (PPI) in the development of BfT to ensure that BfT was developed as per the requirements of walking stick users and AHP recommendations. The newly developed system was tested quantitatively for; validity, reliability, and reproducibility against gold standard equipment such as the 3D motion capture system, force plates, optical measurement system for orientation, weight bearing, and step count. The system was also tested qualitatively for its usability by conducting semi-informal interviews with AHPs and walking stick users. The results of these studies showed that the newly developed system has good accuracy, reported above 95% with a maximum inaccuracy of 1°. The data reported indicates good reproducibility. The angles, weight, and steps recorded by the system during experiments are within the values published in the literature. From these studies, it was concluded that, BfT has the potential to improve the lives of walking stick users and that, with few additional improvements, appropriate approval from relevant regulatory bodies, and robust clinical testing, the technology has a huge potential to carve its way to a commercial market

    Path and Motion Planning for Autonomous Mobile 3D Printing

    Get PDF
    Autonomous robotic construction was envisioned as early as the ‘90s, and yet, con- struction sites today look much alike ones half a century ago. Meanwhile, highly automated and efficient fabrication methods like Additive Manufacturing, or 3D Printing, have seen great success in conventional production. However, existing efforts to transfer printing technology to construction applications mainly rely on manufacturing-like machines and fail to utilise the capabilities of modern robotics. This thesis considers using Mobile Manipulator robots to perform large-scale Additive Manufacturing tasks. Comprised of an articulated arm and a mobile base, Mobile Manipulators, are unique in their simultaneous mobility and agility, which enables printing-in-motion, or Mobile 3D Printing. This is a 3D printing modality, where a robot deposits material along larger-than-self trajectories while in motion. Despite profound potential advantages over existing static manufacturing-like large- scale printers, Mobile 3D printing is underexplored. Therefore, this thesis tack- les Mobile 3D printing-specific challenges and proposes path and motion planning methodologies that allow this printing modality to be realised. The work details the development of Task-Consistent Path Planning that solves the problem of find- ing a valid robot-base path needed to print larger-than-self trajectories. A motion planning and control strategy is then proposed, utilising the robot-base paths found to inform an optimisation-based whole-body motion controller. Several Mobile 3D Printing robot prototypes are built throughout this work, and the overall path and motion planning strategy proposed is holistically evaluated in a series of large-scale 3D printing experiments

    Learning Motion Skills for a Humanoid Robot

    Get PDF
    This thesis investigates the learning of motion skills for humanoid robots. As groundwork, a humanoid robot with integrated fall management was developed as an experimental platform. Then, two different approaches for creating motion skills were investigated. First, one that is based on Cartesian quintic splines with optimized parameters. Second, a reinforcement learning-based approach that utilizes the first approach as a reference motion to guide the learning. Both approaches were tested on the developed robot and on further simulated robots to show their generalization. A special focus was set on the locomotion skill, but a standing-up and kick skill are also discussed. Diese Dissertation beschäftigt sich mit dem Lernen von Bewegungsfähigkeiten für humanoide Roboter. Als Grundlage wurde zunächst ein humanoider Roboter mit integriertem Fall Management entwickelt, welcher als Experimentalplatform dient. Dann wurden zwei verschiedene Ansätze für die Erstellung von Bewegungsfähigkeiten untersucht. Zu erst einer der kartesische quintische Splines mit optimierten Parametern nutzt. Danach wurde ein Ansatz basierend auf bestärkendem Lernen untersucht, welcher den ersten Ansatz als Referenzbewegung benutzt. Beide Ansätze wurden sowohl auf der entwickelten Roboterplatform, als auch auf weiteren simulierten Robotern getestet um die Generalisierbarkeit zu zeigen. Ein besonderer Fokus wurde auf die Fähigkeit des Gehens gelegt, aber auch Aufsteh- und Schussfähigkeiten werden diskutiert

    Accessibility of Health Data Representations for Older Adults: Challenges and Opportunities for Design

    Get PDF
    Health data of consumer off-the-shelf wearable devices is often conveyed to users through visual data representations and analyses. However, this is not always accessible to people with disabilities or older people due to low vision, cognitive impairments or literacy issues. Due to trade-offs between aesthetics predominance or information overload, real-time user feedback may not be conveyed easily from sensor devices through visual cues like graphs and texts. These difficulties may hinder critical data understanding. Additional auditory and tactile feedback can also provide immediate and accessible cues from these wearable devices, but it is necessary to understand existing data representation limitations initially. To avoid higher cognitive and visual overload, auditory and haptic cues can be designed to complement, replace or reinforce visual cues. In this paper, we outline the challenges in existing data representation and the necessary evidence to enhance the accessibility of health information from personal sensing devices used to monitor health parameters such as blood pressure, sleep, activity, heart rate and more. By creating innovative and inclusive user feedback, users will likely want to engage and interact with new devices and their own data

    Safe navigation and human-robot interaction in assistant robotic applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore