2,950,441 research outputs found

    Planning and Scheduling of Business Processes in Run-Time: A Repair Planning Example

    Get PDF
    Over the last decade, the efficient and flexible management of business processes has become one of the most critical success aspects. Furthermore, there exists a growing interest in the application of Artificial Intelligence Planning and Scheduling techniques to automate the production and execution of models of organization. However, from our point of view, several connections between both disciplines remains to be exploited. The current work presents a proposal for modelling and enacting business processes that involve the selection and order of the activities to be executed (planning), besides the resource allocation (scheduling), considering the optimization of several functions and the reach of some objectives. The main novelty is that all decisions (even the activities selection) are taken in run-time considering the actual parameters of the execution, so the business process is managed in an efficient and flexible way. As an example, a complex and representative problem, the repair planning problem, is managed through the proposed approach.Ministerio de Ciencia e InnovaciĂłn TIN2009-13714Junta de AndalucĂ­a P08-TIC-0409

    Dynamic Time-Dependent Route Planning in Road Networks with User Preferences

    Full text link
    There has been tremendous progress in algorithmic methods for computing driving directions on road networks. Most of that work focuses on time-independent route planning, where it is assumed that the cost on each arc is constant per query. In practice, the current traffic situation significantly influences the travel time on large parts of the road network, and it changes over the day. One can distinguish between traffic congestion that can be predicted using historical traffic data, and congestion due to unpredictable events, e.g., accidents. In this work, we study the \emph{dynamic and time-dependent} route planning problem, which takes both prediction (based on historical data) and live traffic into account. To this end, we propose a practical algorithm that, while robust to user preferences, is able to integrate global changes of the time-dependent metric~(e.g., due to traffic updates or user restrictions) faster than previous approaches, while allowing subsequent queries that enable interactive applications

    The time horizon and its role in multiple species conservation planning

    Full text link
    Survival probability within a certain time horizon T is a common measure of population viability. The choice of T implicitly involves a time preference, similar to economic discounting: Conservation success is evaluated at the time horizon T, while all effects that occur later than T are not considered. Despite the obvious relevance of the time horizon, ecological studies seldom analyze its impact on the evaluation of conservation options. In this paper, we show that, while the choice of T does not change the ranking of conservation options for single species under stationary conditions, it may substantially change conservation decisions for multiple species. We conclude that it is of crucial importance to investigate the sensitivity of model results to the choice of the time horizon or other measures of time preference when prioritizing biodiversity conservation efforts.Comment: 8 pages, 5 figures. Minor changes to v1. This version corredponds to the final publication in Biological Conservatio

    Sub-Optimal Allocation of Time in Sequential Movements

    Get PDF
    The allocation of limited resources such as time or energy is a core problem that organisms face when planning complex actions. Most previous research concerning planning of movement has focused on the planning of single, isolated movements. Here we investigated the allocation of time in a pointing task where human subjects attempted to touch two targets in a specified order to earn monetary rewards. Subjects were required to complete both movements within a limited time but could freely allocate the available time between the movements. The time constraint presents an allocation problem to the subjects: the more time spent on one movement, the less time is available for the other. In different conditions we assigned different rewards to the two tokens. How the subject allocated time between movements affected their expected gain on each trial. We also varied the angle between the first and second movements and the length of the second movement. Based on our results, we developed and tested a model of speed-accuracy tradeoff for sequential movements. Using this model we could predict the time allocation that would maximize the expected gain of each subject in each experimental condition. We compared human performance with predicted optimal performance. We found that all subjects allocated time sub-optimally, spending more time than they should on the first movement even when the reward of the second target was five times larger than the first. We conclude that the movement planning system fails to maximize expected reward in planning sequences of as few as two movements and discuss possible interpretations drawn from economic theory

    Real-time Motion Planning For Autonomous Car in Multiple Situations Under Simulated Urban Environment

    Get PDF
    Advanced autonomous cars have revolutionary meaning for the automobile industry. While more and more companies have already started to build their own autonomous cars, no one has yet brought a practical autonomous car into the market. One key problem of their cars is lacking a reliable active real-time motion planning system for the urban environment. A real-time motion planning system makes cars can safely and stably drive under the urban environment. The final goal for this project is to design and implement a reliable real-time motion planning system to reduce accident rates in autonomous cars instead of human drivers. The real-time motion planning system includes lane-keeping, obstacle avoidance, moving car avoidance, adaptive cruise control, and accident avoidance function. In the research, EGO vehicles will be built and equipped with an image processing unit, a LIDAR, and two ultrasonic sensors to detect the environment. These environment data make it possible to implement a full control program in the real-time motion planning system. The control program will be implemented and tested in a scaled-down EGO vehicle with a scaled-down urban environment. The project has been divided into three phases: build EGO vehicles, implement the control program of the real-time motion planning system, and improve the control program by testing under the scale-down urban environment. In the first phase, each EGO vehicle will be built by an EGO vehicle chassis kit, a Raspberry Pi, a LIDAR, two ultrasonic sensors, a battery, and a power board. In the second phase, the control program of the real-time motion planning system will be implemented under the lane-keeping program in Raspberry Pi. Python is the programming language that will be used to implement the program. Lane-keeping, obstacle avoidance, moving car avoidance, adaptive cruise control functions will be built in this control program. In the last phase, testing and improvement works will be finished. Reliability tests will be designed and fulfilled. The more data grab from tests, the more stability of the real-time motion planning system can be implemented. Finally, one reliable motion planning system will be built, which will be used in normal scale EGO vehicles to reduce accident rates significantly under the urban environment.No embargoAcademic Major: Electrical and Computer Engineerin
    • …
    corecore