16,317 research outputs found

    Cloud-based desktop services for thin clients

    Get PDF
    Cloud computing and ubiquitous network availability have renewed people's interest in the thin client concept. By executing applications in virtual desktops on cloud servers, users can access any application from any location with any device. For this to be a successful alternative to traditional offline applications, however, researchers must overcome important challenges. The thin client protocol must display audiovisual output fluidly, and the server executing the virtual desktop should have sufficient resources and ideally be close to the user's current location to limit network delay. From a service provider viewpoint, cost reduction is also an important issue

    A Self-adaptive Agent-based System for Cloud Platforms

    Full text link
    Cloud computing is a model for enabling on-demand network access to a shared pool of computing resources, that can be dynamically allocated and released with minimal effort. However, this task can be complex in highly dynamic environments with various resources to allocate for an increasing number of different users requirements. In this work, we propose a Cloud architecture based on a multi-agent system exhibiting a self-adaptive behavior to address the dynamic resource allocation. This self-adaptive system follows a MAPE-K approach to reason and act, according to QoS, Cloud service information, and propagated run-time information, to detect QoS degradation and make better resource allocation decisions. We validate our proposed Cloud architecture by simulation. Results show that it can properly allocate resources to reduce energy consumption, while satisfying the users demanded QoS
    corecore