30 research outputs found

    Topologically-Guided Robotic Information Gathering

    Get PDF
    Information gathering tasks, such as terrestrial search and rescue, aerial inspection, and marine monitoring, require robotic unmanned systems to make decisions on how to travel within an environment to maximize or minimize a path-dependent information objective function. The distribution of information throughout the environment is the result of various processes, either natural or human-caused, and so this distribution exhibits an underlying structure. Existing information gathering algorithms seek to implicitly exploit this structure by selecting paths which maximize the robot's time in high-value regions. We see an opportunity to improve the performance of robots in these information gathering tasks by explicitly reasoning over the structure of information, allowing robots to plan their information gathering missions more efficiently and effectively. Topological representations provide an elegant way to describe the structure of an environment using descriptors that are defined relative to a set of features in the environment. Since these descriptors are inherently global, they provide a way for robots to reason directly about their paths within the global context of their operational environments. This additional context enables robotic systems to efficiently plan non-myopically. To accomplish this goal, this thesis develops four contributions that allow robotic systems to reason about topological structure in field robotics tasks. The first contribution is a method for formalizing topological path constraints using a Mixed Integer Programming formulation to plan. Our second contribution is a system for exploiting expert-provided domain knowledge to track a topological feature using a team of heterogeneous robots. Both of these contributions provide ways to exploit the existence of topological features in the environment to motivate and constrain information gathering tasks. However, these methods require the features to be defined before planning. While methods to identify features exist for well-constructed indoor environments, they do not extend to the less-structured outdoor environments more common in field robotics applications. Our third and fourth contributions address this problem. The third contribution of this thesis is a hierarchical planning algorithm which identifies hotspot regions in an information function and uses them to construct a high-level planning graph, while the fourth is an algorithm for fitting a Topology-Aware Self-Organizing Map to an information function. The benefits of reasoning about the topology of the information field is demonstrated in simulation and field experiments. By incorporating global context about the information gathering task via topology, our methods are able to plan paths that collect more information than a naïve myopic planner. Furthermore, we are able to produce comparable or superior paths more quickly than state-of-the-art planners that do consider the entire path, such as combinatorial branch and bound algorithms

    NEPTUNE: Non-Entangling Planning for Multiple Tethered Unmanned Vehicles

    Full text link
    Despite recent progress on trajectory planning of multiple robots and path planning of a single tethered robot, planning of multiple tethered robots to reach their individual targets without entanglements remains a challenging problem. In this paper, we present a complete approach to address this problem. Firstly, we propose a multi-robot tether-aware representation of homotopy, using which we can efficiently evaluate the feasibility and safety of a potential path in terms of (1) the cable length required to reach a target following the path, and (2) the risk of entanglements with the cables of other robots. Then, the proposed representation is applied in a decentralized and online planning framework that includes a graph-based kinodynamic trajectory finder and an optimization-based trajectory refinement, to generate entanglement-free, collision-free and dynamically feasible trajectories. The efficiency of the proposed homotopy representation is compared against existing single and multiple tethered robot planning approaches. Simulations with up to 8 UAVs show the effectiveness of the approach in entanglement prevention and its real-time capabilities. Flight experiments using 3 tethered UAVs verify the practicality of the presented approach.Comment: Accepted for publication in IEEE Transaction on Robotic

    Exploration autonome et efficiente de chantiers miniers souterrains inconnus avec un drone filaire

    Get PDF
    Abstract: Underground mining stopes are often mapped using a sensor located at the end of a pole that the operator introduces into the stope from a secure area. The sensor emits laser beams that provide the distance to a detected wall, thus creating a 3D map. This produces shadow zones and a low point density on the distant walls. To address these challenges, a research team from the Université de Sherbrooke is designing a tethered drone equipped with a rotating LiDAR for this mission, thus benefiting from several points of view. The wired transmission allows for unlimited flight time, shared computing, and real-time communication. For compatibility with the movement of the drone after tether entanglements, the excess length is integrated into an onboard spool, contributing to the drone payload. During manual piloting, the human factor causes problems in the perception and comprehension of a virtual 3D environment, as well as the execution of an optimal mission. This thesis focuses on autonomous navigation in two aspects: path planning and exploration. The system must compute a trajectory that maps the entire environment, minimizing the mission time and respecting the maximum onboard tether length. Path planning using a Rapidly-exploring Random Tree (RRT) quickly finds a feasible path, but the optimization is computationally expensive and the performance is variable and unpredictable. Exploration by the frontier method is representative of the space to be explored and the path can be optimized by solving a Traveling Salesman Problem (TSP) but existing techniques for a tethered drone only consider the 2D case and do not optimize the global path. To meet these challenges, this thesis presents two new algorithms. The first one, RRT-Rope, produces an equal or shorter path than existing algorithms in a significantly shorter computation time, up to 70% faster than the next best algorithm in a representative environment. A modified version of RRT-connect computes a feasible path, shortened with a deterministic technique that takes advantage of previously added intermediate nodes. The second algorithm, TAPE, is the first 3D cavity exploration method that focuses on minimizing mission time and unwound tether length. On average, the overall path is 4% longer than the method that solves the TSP, but the tether remains under the allowed length in 100% of the simulated cases, compared to 53% with the initial method. The approach uses a 2-level hierarchical architecture: global planning solves a TSP after frontier extraction, and local planning minimizes the path cost and tether length via a decision function. The integration of these two tools in the NetherDrone produces an intelligent system for autonomous exploration, with semi-autonomous features for operator interaction. This work opens the door to new navigation approaches in the field of inspection, mapping, and Search and Rescue missions.La cartographie des chantiers miniers souterrains est souvent réalisée à l’aide d’un capteur situé au bout d’une perche que l’opérateur introduit dans le chantier, depuis une zone sécurisée. Le capteur émet des faisceaux laser qui fournissent la distance à un mur détecté, créant ainsi une carte en 3D. Ceci produit des zones d’ombres et une faible densité de points sur les parois éloignées. Pour relever ces défis, une équipe de recherche de l’Université de Sherbrooke conçoit un drone filaire équipé d’un LiDAR rotatif pour cette mission, bénéficiant ainsi de plusieurs points de vue. La transmission filaire permet un temps de vol illimité, un partage de calcul et une communication en temps réel. Pour une compatibilité avec le mouvement du drone lors des coincements du fil, la longueur excédante est intégrée dans une bobine embarquée, qui contribue à la charge utile du drone. Lors d’un pilotage manuel, le facteur humain entraîne des problèmes de perception et compréhension d’un environnement 3D virtuel, et d’exécution d’une mission optimale. Cette thèse se concentre sur la navigation autonome sous deux aspects : la planification de trajectoire et l’exploration. Le système doit calculer une trajectoire qui cartographie l’environnement complet, en minimisant le temps de mission et en respectant la longueur maximale de fil embarquée. La planification de trajectoire à l’aide d’un Rapidly-exploring Random Tree (RRT) trouve rapidement un chemin réalisable, mais l’optimisation est coûteuse en calcul et la performance est variable et imprévisible. L’exploration par la méthode des frontières est représentative de l’espace à explorer et le chemin peut être optimisé en résolvant un Traveling Salesman Problem (TSP), mais les techniques existantes pour un drone filaire ne considèrent que le cas 2D et n’optimisent pas le chemin global. Pour relever ces défis, cette thèse présente deux nouveaux algorithmes. Le premier, RRT-Rope, produit un chemin égal ou plus court que les algorithmes existants en un temps de calcul jusqu’à 70% plus court que le deuxième meilleur algorithme dans un environnement représentatif. Une version modifiée de RRT-connect calcule un chemin réalisable, raccourci avec une technique déterministe qui tire profit des noeuds intermédiaires préalablement ajoutés. Le deuxième algorithme, TAPE, est la première méthode d’exploration de cavités en 3D qui minimise le temps de mission et la longueur du fil déroulé. En moyenne, le trajet global est 4% plus long que la méthode qui résout le TSP, mais le fil reste sous la longueur autorisée dans 100% des cas simulés, contre 53% avec la méthode initiale. L’approche utilise une architecture hiérarchique à 2 niveaux : la planification globale résout un TSP après extraction des frontières, et la planification locale minimise le coût du chemin et la longueur de fil via une fonction de décision. L’intégration de ces deux outils dans le NetherDrone produit un système intelligent pour l’exploration autonome, doté de fonctionnalités semi-autonomes pour une interaction avec l’opérateur. Les travaux réalisés ouvrent la porte à de nouvelles approches de navigation dans le domaine des missions d’inspection, de cartographie et de recherche et sauvetage

    Decentralized sensor placement and mobile localization on an underwater sensor network with depth adjustment capabilities

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 203-214).Over 70% of our planet is covered by water. It is widely believed that the underwater world holds ideas and resources that will fuel much of the next generation of science and business. Unfortunately, underwater operations are fraught with difficulty due to the absence of an easy way to collect and monitor data. In this thesis we propose a novel underwater sensor network designed to mitigate the problems of underwater sensing and communication. A key feature of this system is the ability of individual nodes to control their depth in water. This single degree of freedom allows the network to cooperatively optimize placement for communication and data collection while minimizing time and energy use. The sensor network also enables a GPS-like system for localizing underwater robots to aid in data retrieval and sensing. We develop a gradient-based decentralized controller that dynamically adjusts the depth of a network of underwater sensors to optimize sensing for modeling 3D properties of the water. We prove that the controller converges to a local minimum, and implement the controller on our underwater sensor network, where each node is capable of adjusting its depth. We verify the algorithm through simulations and in-water experiments. Most applications require that we associate a location with the sensed data. We have developed an underwater mobile robot localization algorithm that allows underwater robots to act as mobile sensors in the sensor network by using ranging information. The algorithm is a minimalist, geometric-based algorithm that only relies on knowing an upper bound on the robot speed and known static node locations. We prove that the algorithm finds the optimal location of the robot and analyze the algorithm in simulation and in water with our underwater sensor network.by Carrick Detweiler.Ph.D

    Systematic Approaches for Telemedicine and Data Coordination for COVID-19 in Baja California, Mexico

    Get PDF
    Conference proceedings info: ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologies Raleigh, HI, United States, March 24-26, 2023 Pages 529-542We provide a model for systematic implementation of telemedicine within a large evaluation center for COVID-19 in the area of Baja California, Mexico. Our model is based on human-centric design factors and cross disciplinary collaborations for scalable data-driven enablement of smartphone, cellular, and video Teleconsul-tation technologies to link hospitals, clinics, and emergency medical services for point-of-care assessments of COVID testing, and for subsequent treatment and quar-antine decisions. A multidisciplinary team was rapidly created, in cooperation with different institutions, including: the Autonomous University of Baja California, the Ministry of Health, the Command, Communication and Computer Control Center of the Ministry of the State of Baja California (C4), Colleges of Medicine, and the College of Psychologists. Our objective is to provide information to the public and to evaluate COVID-19 in real time and to track, regional, municipal, and state-wide data in real time that informs supply chains and resource allocation with the anticipation of a surge in COVID-19 cases. RESUMEN Proporcionamos un modelo para la implementación sistemática de la telemedicina dentro de un gran centro de evaluación de COVID-19 en el área de Baja California, México. Nuestro modelo se basa en factores de diseño centrados en el ser humano y colaboraciones interdisciplinarias para la habilitación escalable basada en datos de tecnologías de teleconsulta de teléfonos inteligentes, celulares y video para vincular hospitales, clínicas y servicios médicos de emergencia para evaluaciones de COVID en el punto de atención. pruebas, y para el tratamiento posterior y decisiones de cuarentena. Rápidamente se creó un equipo multidisciplinario, en cooperación con diferentes instituciones, entre ellas: la Universidad Autónoma de Baja California, la Secretaría de Salud, el Centro de Comando, Comunicaciones y Control Informático. de la Secretaría del Estado de Baja California (C4), Facultades de Medicina y Colegio de Psicólogos. Nuestro objetivo es proporcionar información al público y evaluar COVID-19 en tiempo real y rastrear datos regionales, municipales y estatales en tiempo real que informan las cadenas de suministro y la asignación de recursos con la anticipación de un aumento de COVID-19. 19 casos.ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologieshttps://doi.org/10.1007/978-981-99-3236-

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Law and Policy for the Quantum Age

    Get PDF
    Law and Policy for the Quantum Age is for readers interested in the political and business strategies underlying quantum sensing, computing, and communication. This work explains how these quantum technologies work, future national defense and legal landscapes for nations interested in strategic advantage, and paths to profit for companies

    Design and Experimental Evaluation of a Hybrid Wheeled-Leg Exploration Rover in the Context of Multi-Robot Systems

    Get PDF
    With this dissertation, the electromechanic design, implementation, locomotion control, and experimental evaluation of a novel type of hybrid wheeled-leg exploration rover are presented. The actively articulated suspension system of the rover is the basis for advanced locomotive capabilities of a mobile exploration robot. The developed locomotion control system abstracts the complex kinematics of the suspension system and provides platform control inputs usable by autonomous behaviors or human remote control. Design and control of the suspension system as well as experimentation with the resulting rover are in the focus of this thesis. The rover is part of a heterogeneous modular multi-robot exploration system with an aspired sample return mission to the lunar south pole or currently hard-to-access regions on Mars. The multi-robot system pursues a modular and reconfigurable design methodology. It combines heterogeneous robots with different locomotion capabilities for enhanced overall performance. Consequently, the design of the multi-robot system is presented as the frame of the rover developments. The requirements for the rover design originating from the deployment in a modular multi-robot system are accentuated and summarized in this thesis

    32 in \u2744: A management and environmental study of submarine construction at Portsmouth Navy Yard during World War II

    Get PDF
    After averaging the completion of less than two submarines a year in the 1930s, the Portsmouth Navy Yard completed an astonishing thirty-two submarines in 1944. The yard\u27s outstanding performance during World War II was the product of a highly motivated work force and a management team that thrived in a decentralized wartime shipyard environment. Employing aggressive and innovative management techniques that included employee empowerment, small teams, and mass production techniques to the extent that they could be applied to submarine construction at the time, the shipyard delivered submarines at unprecedented rates. There were downsides to the shipyard\u27s crowning achievements during the war that included landfills contaminated with toxic industrial waste, increased pollution of the Piscataqua River, and lost wetlands. In addition, the greatly increased employment and military presence at the yard brought challenges to local communities that struggled to increase housing, infrastructure, and services to accommodate the increased numbers of new residents. Not the least of these struggles included efforts to curb prostitution and an alarming increase in venereal disease. While wrestling with these day-to-day problems during the war, local communities feared an uncertain, and possibly economically disastrous, postwar future should peace bring dramatically reduced employment or closure of the yard. This dissertation looks at both sides of Portsmouth Navy Yard\u27s war years: the tremendous upside wherein remarkable submarine production records were achieved that brought economic prosperity to the area, and the downside that saw significant environmental abuse and sociological turmoil as communities adjusted to the problems that accompanied a Navy boomtown. A preliminary review places the yard in context with important national and international events between the wars to set the stage for an analysis of how the shipyard achieved 32 in \u2744, and the consequences of that success
    corecore