560 research outputs found

    Planning Through Stochastic Local Search and Temporal Action Graphs in LPG

    Full text link
    We present some techniques for planning in domains specified with the recent standard language PDDL2.1, supporting 'durative actions' and numerical quantities. These techniques are implemented in LPG, a domain-independent planner that took part in the 3rd International Planning Competition (IPC). LPG is an incremental, any time system producing multi-criteria quality plans. The core of the system is based on a stochastic local search method and on a graph-based representation called 'Temporal Action Graphs' (TA-graphs). This paper focuses on temporal planning, introducing TA-graphs and proposing some techniques to guide the search in LPG using this representation. The experimental results of the 3rd IPC, as well as further results presented in this paper, show that our techniques can be very effective. Often LPG outperforms all other fully-automated planners of the 3rd IPC in terms of speed to derive a solution, or quality of the solutions that can be produced

    Plan stability: replanning versus plan repair

    Get PDF
    The ultimate objective in planning is to construct plans for execution. However, when a plan is executed in a real environment it can encounter differences between the expected and actual context of execution. These differences can manifest as divergences between the expected and observed states of the world, or as a change in the goals to be achieved by the plan. In both cases, the old plan must be replaced with a new one. In replacing the plan an important consideration is plan stability. We compare two alternative strategies for achieving the {em stable} repair of a plan: one is simply to replan from scratch and the other is to adapt the existing plan to the new context. We present arguments to support the claim that plan stability is a valuable property. We then propose an implementation, based on LPG, of a plan repair strategy that adapts a plan to its new context. We demonstrate empirically that our plan repair strategy achieves more stability than replanning and can produce repaired plans more efficiently than replanning

    Taming Numbers and Durations in the Model Checking Integrated Planning System

    Full text link
    The Model Checking Integrated Planning System (MIPS) is a temporal least commitment heuristic search planner based on a flexible object-oriented workbench architecture. Its design clearly separates explicit and symbolic directed exploration algorithms from the set of on-line and off-line computed estimates and associated data structures. MIPS has shown distinguished performance in the last two international planning competitions. In the last event the description language was extended from pure propositional planning to include numerical state variables, action durations, and plan quality objective functions. Plans were no longer sequences of actions but time-stamped schedules. As a participant of the fully automated track of the competition, MIPS has proven to be a general system; in each track and every benchmark domain it efficiently computed plans of remarkable quality. This article introduces and analyzes the most important algorithmic novelties that were necessary to tackle the new layers of expressiveness in the benchmark problems and to achieve a high level of performance. The extensions include critical path analysis of sequentially generated plans to generate corresponding optimal parallel plans. The linear time algorithm to compute the parallel plan bypasses known NP hardness results for partial ordering by scheduling plans with respect to the set of actions and the imposed precedence relations. The efficiency of this algorithm also allows us to improve the exploration guidance: for each encountered planning state the corresponding approximate sequential plan is scheduled. One major strength of MIPS is its static analysis phase that grounds and simplifies parameterized predicates, functions and operators, that infers knowledge to minimize the state description length, and that detects domain object symmetries. The latter aspect is analyzed in detail. MIPS has been developed to serve as a complete and optimal state space planner, with admissible estimates, exploration engines and branching cuts. In the competition version, however, certain performance compromises had to be made, including floating point arithmetic, weighted heuristic search exploration according to an inadmissible estimate and parameterized optimization

    ASAP: An Automatic Algorithm Selection Approach for Planning

    Get PDF
    Despite the advances made in the last decade in automated planning, no planner out- performs all the others in every known benchmark domain. This observation motivates the idea of selecting different planning algorithms for different domains. Moreover, the planners’ performances are affected by the structure of the search space, which depends on the encoding of the considered domain. In many domains, the performance of a plan- ner can be improved by exploiting additional knowledge, for instance, in the form of macro-operators or entanglements. In this paper we propose ASAP, an automatic Algorithm Selection Approach for Planning that: (i) for a given domain initially learns additional knowledge, in the form of macro-operators and entanglements, which is used for creating different encodings of the given planning domain and problems, and (ii) explores the 2 dimensional space of available algorithms, defined as encodings–planners couples, and then (iii) selects the most promising algorithm for optimising either the runtimes or the quality of the solution plans

    Neural Networks for Predicting Algorithm Runtime Distributions

    Full text link
    Many state-of-the-art algorithms for solving hard combinatorial problems in artificial intelligence (AI) include elements of stochasticity that lead to high variations in runtime, even for a fixed problem instance. Knowledge about the resulting runtime distributions (RTDs) of algorithms on given problem instances can be exploited in various meta-algorithmic procedures, such as algorithm selection, portfolios, and randomized restarts. Previous work has shown that machine learning can be used to individually predict mean, median and variance of RTDs. To establish a new state-of-the-art in predicting RTDs, we demonstrate that the parameters of an RTD should be learned jointly and that neural networks can do this well by directly optimizing the likelihood of an RTD given runtime observations. In an empirical study involving five algorithms for SAT solving and AI planning, we show that neural networks predict the true RTDs of unseen instances better than previous methods, and can even do so when only few runtime observations are available per training instance

    On the predictability of domain-independent temporal planners

    Get PDF
    Temporal planning is a research discipline that addresses the problem of generating a totally or a partially ordered sequence of actions that transform the environment from some initial state to a desired goal state, while taking into account time constraints and actions' duration. For its ability to describe and address temporal constraints, temporal planning is of critical importance for a wide range of real-world applications. Predicting the performance of temporal planners can lead to significant improvements in the area, as planners can then be combined in order to boost the performance on a given set of problem instances. This paper investigates the predictability of the state-of-the-art temporal planners by introducing a new set of temporal-specific features and exploiting them for generating classification and regression empirical performance models (EPMs) of considered planners. EPMs are also tested with regard to their ability to select the most promising planner for efficiently solving a given temporal planning problem. Our extensive empirical analysis indicates that the introduced set of features allows to generate EPMs that can effectively perform algorithm selection, and the use of EPMs is therefore a promising direction for improving the state of the art of temporal planning, hence fostering the use of planning in real-world applications.</p

    Short Term Unit Commitment as a Planning Problem

    Get PDF
    ‘Unit Commitment’, setting online schedules for generating units in a power system to ensure supply meets demand, is integral to the secure, efficient, and economic daily operation of a power system. Conflicting desires for security of supply at minimum cost complicate this. Sustained research has produced methodologies within a guaranteed bound of optimality, given sufficient computing time. Regulatory requirements to reduce emissions in modern power systems have necessitated increased renewable generation, whose output cannot be directly controlled, increasing complex uncertainties. Traditional methods are thus less efficient, generating more costly schedules or requiring impractical increases in solution time. Meta-Heuristic approaches are studied to identify why this large body of work has had little industrial impact despite continued academic interest over many years. A discussion of lessons learned is given, and should be of interest to researchers presenting new Unit Commitment approaches, such as a Planning implementation. Automated Planning is a sub-field of Artificial Intelligence, where a timestamped sequence of predefined actions manipulating a system towards a goal configuration is sought. This differs from previous Unit Commitment formulations found in the literature. There are fewer times when a unit’s online status switches, representing a Planning action, than free variables in a traditional formulation. Efficient reasoning about these actions could reduce solution time, enabling Planning to tackle Unit Commitment problems with high levels of renewable generation. Existing Planning formulations for Unit Commitment have not been found. A successful formulation enumerating open challenges would constitute a good benchmark problem for the field. Thus, two models are presented. The first demonstrates the approach’s strength in temporal reasoning over numeric optimisation. The second balances this but current algorithms cannot handle it. Extensions to an existing algorithm are proposed alongside a discussion of immediate challenges and possible solutions. This is intended to form a base from which a successful methodology can be developed
    • …
    corecore