190 research outputs found

    Path Planning For Persistent Surveillance Applications Using Fixed-Wing Unmanned Aerial Vehicles

    Get PDF
    This thesis addresses coordinated path planning for fixed-wing Unmanned Aerial Vehicles (UAVs) engaged in persistent surveillance missions. While uniquely suited to this mission, fixed wing vehicles have maneuver constraints that can limit their performance in this role. Current technology vehicles are capable of long duration flight with a minimal acoustic footprint while carrying an array of cameras and sensors. Both military tactical and civilian safety applications can benefit from this technology. We make three main contributions: C1 A sequential path planner that generates a C2 flight plan to persistently acquire a covering set of data over a user designated area of interest. The planner features the following innovations: • A path length abstraction that embeds kino-dynamic motion constraints to estimate feasible path length • A Traveling Salesman-type planner to generate a covering set route based on the path length abstraction • A smooth path generator that provides C2 routes that satisfy user specified curvature constraints C2 A set of algorithms to coordinate multiple UAVs, including mission commencement from arbitrary locations to the start of a coordinated mission and de-confliction of paths to avoid collisions with other vehicles and fixed obstacles iv C3 A numerically robust toolbox of spline-based algorithms tailored for vehicle routing validated through flight test experiments on multiple platforms. A variety of tests and platforms are discussed. The algorithms presented are based on a technical approach with approximately equal emphasis on analysis, computation, dynamic simulation, and flight test experimentation. Our planner (C1) directly takes into account vehicle maneuverability and agility constraints that could otherwise render simple solutions infeasible. This is especially important when surveillance objectives elevate the importance of optimized paths. Researchers have devel oped a diverse range of solutions for persistent surveillance applications but few directly address dynamic maneuver constraints. The key feature of C1 is a two stage sequential solution that discretizes the problem so that graph search techniques can be combined with parametric polynomial curve generation. A method to abstract the kino-dynamics of the aerial platforms is then presented so that a graph search solution can be adapted for this application. An A* Traveling Salesman Problem (TSP) algorithm is developed to search the discretized space using the abstract distance metric to acquire more data or avoid obstacles. Results of the graph search are then transcribed into smooth paths based on vehicle maneuver constraints. A complete solution for a single vehicle periodic tour of the area is developed using the results of the graph search algorithm. To execute the mission, we present a simultaneous arrival algorithm (C2) to coordinate execution by multiple vehicles to satisfy data refresh requirements and to ensure there are no collisions at any of the path intersections. We present a toolbox of spline-based algorithms (C3) to streamline the development of C2 continuous paths with numerical stability. These tools are applied to an aerial persistent surveillance application to illustrate their utility. Comparisons with other parametric poly nomial approaches are highlighted to underscore the benefits of the B-spline framework. Performance limits with respect to feasibility constraints are documented

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version
    corecore