52 research outputs found

    Plane augmentation of plane graphs to meet parity constraints

    Get PDF
    A plane topological graph G=(V, E) is a graph drawn in the plane whose vertices are points in the plane and whose edges are simple curves that do not intersect, except at their endpoints. Given a plane topological graph G=(V, E) and a set CG of parity constraints, in which every vertex has assigned a parity constraint on its degree, either even or odd, we say that G is topologically augmentable to meet CG if there exists a set E' of new edges, disjoint with E, such that G'=(V, E¿E') is noncrossing and meets all parity constraints. In this paper, we prove that the problem of deciding if a plane topological graph is topologically augmentable to meet parity constraints is NP-complete, even if the set of vertices that must change their parities is V or the set of vertices with odd degree. In particular, deciding if a plane topological graph can be augmented to a Eulerian plane topological graph is NP-complete. Analogous complexity results are obtained, when the augmentation must be done by a plane topological perfect matching between the vertices not meeting their parities. We extend these hardness results to planar graphs, when the augmented graph must be planar, and to plane geometric graphs (plane topological graphs whose edges are straight-line segments). In addition, when it is required that the augmentation is made by a plane geometric perfect matching between the vertices not meeting their parities, we also prove that this augmentation problem is NP-complete for plane geometric paths. For the particular family of maximal outerplane graphs, we characterize maximal outerplane graphs that are topological augmentable to satisfy a set of parity constraints. We also provide a polynomial time algorithm that decides if a maximal outerplane graph is topologically augmentable to meet parity constraints, and if so, produces a set of edges with minimum cardinality

    The many faces of planarity : matching, augmentation, and embedding algorithms for planar graphs

    Get PDF

    Algorithms for Graph Connectivity and Cut Problems - Connectivity Augmentation, All-Pairs Minimum Cut, and Cut-Based Clustering

    Get PDF
    We address a collection of related connectivity and cut problems in simple graphs that reach from the augmentation of planar graphs to be k-regular and c-connected to new data structures representing minimum separating cuts and algorithms that smoothly maintain Gomory-Hu trees in evolving graphs, and finally to an analysis of the cut-based clustering approach of Flake et al. and its adaption to dynamic scenarios

    Planarity Variants for Directed Graphs

    Get PDF

    32nd International Symposium on Theoretical Aspects of Computer Science: STACS '15, March 4 - 7, 2015, Garching, Germany

    Get PDF

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF

    Collection of abstracts of the 24th European Workshop on Computational Geometry

    Get PDF
    International audienceThe 24th European Workshop on Computational Geomety (EuroCG'08) was held at INRIA Nancy - Grand Est & LORIA on March 18-20, 2008. The present collection of abstracts contains the 63 scientific contributions as well as three invited talks presented at the workshop

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore