166 research outputs found

    Extending the stixel world using polynomial ground manifold approximation

    Get PDF
    Stixel-based segmentation is specifically designed towards obstacle detection which combines road surface estimation in traffic scenes, stixel calculations, and stixel clustering. Stixels are defined by observed height above road surface. Road surfaces (ground manifolds) are represented by using an occupancy grid map. Stixel-based segmentation may improve the accuracy of real-time obstacle detection, especially if adaptive to changes in ground manifolds (e.g. with respect to non-planar road geometry). In this paper, we propose the use of a polynomial curve fitting algorithm based on the v-disparity space for ground manifold estimation. This is beneficial for two reasons. First, the coordinate space has inherently finite boundaries, which is useful when working with probability densities. Second, it leads to reduced computation time. We combine height segmentation and improved ground manifold algorithms together for stixel extraction. Our experimental results show a significant improvement in the accuracy of the ground manifold detection (an 8% improvement) compared to occupancy-grid mapping methods

    What can be done with an embedded stereo-rig in urban environments?

    Get PDF
    International audienceThe development of the Autonomous Guided Vehicles (AGVs) with urban applications are now possible due to the recent solutions (DARPA Grand Challenge) developed to solve the Simultaneous Localization And Mapping (SLAM) problem: perception, path planning and control. For the last decade, the introduction of GPS systems and vision have been allowed the transposition of SLAM methods dedicated to indoor environments to outdoor ones. When the GPS data are unavailable, the current position of the mobile robot can be estimated by the fusion of data from odometer and/or Inertial Navigation System (INS). We detail in this article what can be done with an uncalibrated stereo-rig, when it is embedded in a vehicle which is going through urban roads. The methodology is based on features extracted on planes: we mainly assume the road at the foreground as the plane common to all the urban scenes but other planes like vertical frontages of buildings can be used if the features extracted on the road are not enough relevant. The relative motions of the coplanar features tracked with both cameras allow us to stimate the vehicle ego-motion with a high precision. Futhermore, the features which don't check the relative motion of the considered plane can be assumed as obstacles

    A Neural Model of Visually Guided Steering, Obstacle Avoidance, and Route Selection

    Full text link
    A neural model is developed to explain how humans can approach a goal object on foot while steering around obstacles to avoid collisions in a cluttered environment. The model uses optic flow from a 3D virtual reality environment to determine the position of objects based on motion discontinuities, and computes heading direction, or the direction of self-motion, from global optic flow. The cortical representation of heading interacts with the representations of a goal and obstacles such that the goal acts as an attractor of heading, while obstacles act as repellers. In addition the model maintains fixation on the goal object by generating smooth pursuit eye movements. Eye rotations can distort the optic flow field, complicating heading perception, and the model uses extraretinal signals to correct for this distortion and accurately represent heading. The model explains how motion processing mechanisms in cortical areas MT, MST, and posterior parietal cortex can be used to guide steering. The model quantitatively simulates human psychophysical data about visually-guided steering, obstacle avoidance, and route selection.Air Force Office of Scientific Research (F4960-01-1-0397); National Geospatial-Intelligence Agency (NMA201-01-1-2016); National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    A Sparsity-Inducing Optimization-Based Algorithm for Planar Patches Extraction from Noisy Point-Cloud Data

    Get PDF
    Currently, much of the manual labor needed to generate as-built Building Information Models (BIMs) of existing facilities is spent converting raw Point Cloud Datasets (PCDs) to BIMs descriptions. Automating the PCD conversion process can drastically reduce the cost of generating as-built BIMs. Due to the widespread existence of planar structures in civil infrastructures, detecting and extracting planar patches from raw PCDs is a fundamental step in the conversion pipeline from PCDs to BIMs. However, existing methods cannot effectively address both automatically detecting and extracting planar patches from infrastructure PCDs. The existing methods cannot resolve the problem due to the large scale and model complexity of civil infrastructure, or due to the requirements of extra constraints or known information. To address the problem, this paper presents a novel framework for automatically detecting and extracting planar patches from large-scale and noisy raw PCDs. The proposed method automatically detects planar structures, estimates the parametric plane models, and determines the boundaries of the planar patches. The first step recovers existing linear dependence relationships amongst points in the PCD by solving a group-sparsity inducing optimization problem. Next, a spectral clustering procedure based on the recovered linear dependence relationships segments the PCD. Then, for each segmented group, model parameters of the extracted planes are estimated via Singular Value Decomposition (SVD) and Maximum Likelihood Estimation Sample Consensus (MLESAC). Finally, the α-shape algorithm detects the boundaries of planar structures based on a projection of the data to the planar model. The proposed approach is evaluated comprehensively by experiments on two types of PCDs from real-world infrastructures, one captured directly by laser scanners and the other reconstructed from video using structure-from-motion techniques. In order to evaluate the performance comprehensively, five evaluation metrics are proposed which measure different aspects of performance. Experimental results reveal that the proposed method outperforms the existing methods, in the sense that the method automatically and accurately extracts planar patches from large-scaled raw PCDs without any extra constraints nor user assistance.This is the accepted manuscript. The final version is available from Wiley at http://onlinelibrary.wiley.com/doi/10.1111/mice.12063/abstract

    From light rays to 3D models

    Get PDF

    Effects of Ground Manifold Modeling on the Accuracy of Stixel Calculations

    Get PDF
    This paper highlights the role of ground manifold modeling for stixel calculations; stixels are medium-level data representations used for the development of computer vision modules for self-driving cars. By using single-disparity maps and simplifying ground manifold models, calculated stixels may suffer from noise, inconsistency, and false-detection rates for obstacles, especially in challenging datasets. Stixel calculations can be improved with respect to accuracy and robustness by using more adaptive ground manifold approximations. A comparative study of stixel results, obtained for different ground-manifold models (e.g., plane-fitting, line-fitting in v-disparities or polynomial approximation, and graph cut), defines the main part of this paper. This paper also considers the use of trinocular stereo vision and shows that this provides options to enhance stixel results, compared with the binocular recording. Comprehensive experiments are performed on two publicly available challenging datasets. We also use a novel way for comparing calculated stixels with ground truth. We compare depth information, as given by extracted stixels, with ground-truth depth, provided by depth measurements using a highly accurate LiDAR range sensor (as available in one of the public datasets). We evaluate the accuracy of four different ground-manifold methods. The experimental results also include quantitative evaluations of the tradeoff between accuracy and run time. As a result, the proposed trinocular recording together with graph-cut estimation of ground manifolds appears to be a recommended way, also considering challenging weather and lighting conditions
    • …
    corecore