2,724 research outputs found

    Exploring complex networks via topological embedding on surfaces

    Full text link
    We demonstrate that graphs embedded on surfaces are a powerful and practical tool to generate, characterize and simulate networks with a broad range of properties. Remarkably, the study of topologically embedded graphs is non-restrictive because any network can be embedded on a surface with sufficiently high genus. The local properties of the network are affected by the surface genus which, for example, produces significant changes in the degree distribution and in the clustering coefficient. The global properties of the graph are also strongly affected by the surface genus which is constraining the degree of interwoveness, changing the scaling properties from large-world-kind (small genus) to small- and ultra-small-world-kind (large genus). Two elementary moves allow the exploration of all networks embeddable on a given surface and naturally introduce a tool to develop a statistical mechanics description. Within such a framework, we study the properties of topologically-embedded graphs at high and low `temperatures' observing the formation of increasingly regular structures by cooling the system. We show that the cooling dynamics is strongly affected by the surface genus with the manifestation of a glassy-like freezing transitions occurring when the amount of topological disorder is low.Comment: 18 pages, 7 figure

    On projections of knots, links and spatial graphs

    Get PDF
    制度:新 ; 報告番号:甲3007号 ; 学位の種類:博士(理学) ; 授与年月日:2010/3/15 ; 早大学位記番号:新525

    Refilling meridians in a genus 2 handlebody complement

    Get PDF
    Suppose a genus two handlebody is removed from a 3-manifold M and then a single meridian of the handlebody is restored. The result is a knot or link complement in M and it is natural to ask whether geometric properties of the link complement say something about the meridian that was restored. Here we consider what the relation must be between two not necessarily disjoint meridians so that restoring each of them gives a trivial knot or a split link.Comment: This is the version published by Geometry & Topology Monographs on 29 April 200
    corecore