79 research outputs found

    Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization

    Get PDF
    In this paper, we propose a general framework for constructing IGA-suitable planar B-spline parameterizations from given complex CAD boundaries consisting of a set of B-spline curves. Instead of forming the computational domain by a simple boundary, planar domains with high genus and more complex boundary curves are considered. Firstly, some pre-processing operations including B\'ezier extraction and subdivision are performed on each boundary curve in order to generate a high-quality planar parameterization; then a robust planar domain partition framework is proposed to construct high-quality patch-meshing results with few singularities from the discrete boundary formed by connecting the end points of the resulting boundary segments. After the topology information generation of quadrilateral decomposition, the optimal placement of interior B\'ezier curves corresponding to the interior edges of the quadrangulation is constructed by a global optimization method to achieve a patch-partition with high quality. Finally, after the imposition of C1=G1-continuity constraints on the interface of neighboring B\'ezier patches with respect to each quad in the quadrangulation, the high-quality B\'ezier patch parameterization is obtained by a C1-constrained local optimization method to achieve uniform and orthogonal iso-parametric structures while keeping the continuity conditions between patches. The efficiency and robustness of the proposed method are demonstrated by several examples which are compared to results obtained by the skeleton-based parameterization approach

    Construction of analysis-suitable G1G^1 planar multi-patch parameterizations

    Full text link
    Isogeometric analysis allows to define shape functions of global C1C^{1} continuity (or of higher continuity) over multi-patch geometries. The construction of such C1C^{1}-smooth isogeometric functions is a non-trivial task and requires particular multi-patch parameterizations, so-called analysis-suitable G1G^{1} (in short, AS-G1G^{1}) parameterizations, to ensure that the resulting C1C^{1} isogeometric spaces possess optimal approximation properties, cf. [7]. In this work, we show through examples that it is possible to construct AS-G1G^{1} multi-patch parameterizations of planar domains, given their boundary. More precisely, given a generic multi-patch geometry, we generate an AS-G1G^{1} multi-patch parameterization possessing the same boundary, the same vertices and the same first derivatives at the vertices, and which is as close as possible to this initial geometry. Our algorithm is based on a quadratic optimization problem with linear side constraints. Numerical tests also confirm that C1C^{1} isogeometric spaces over AS-G1G^{1} multi-patch parameterized domains converge optimally under mesh refinement, while for generic parameterizations the convergence order is severely reduced

    Splines Parameterization of Planar Domains by Physics-Informed Neural Networks

    Get PDF
    The generation of structured grids on bounded domains is a crucial issue in the development of numerical models for solving differential problems. In particular, the representation of the given computational domain through a regular parameterization allows us to define a univalent mapping, which can be computed as the solution of an elliptic problem, equipped with suitable Dirichlet boundary conditions. In recent years, Physics-Informed Neural Networks (PINNs) have been proved to be a powerful tool to compute the solution of Partial Differential Equations (PDEs) replacing standard numerical models, based on Finite Element Methods and Finite Differences, with deep neural networks; PINNs can be used for predicting the values on simulation grids of different resolutions without the need to be retrained. In this work, we exploit the PINN model in order to solve the PDE associated to the differential problem of the parameterization on both convex and non-convex planar domains, for which the describing PDE is known. The final continuous model is then provided by applying a Hermite type quasi-interpolation operator, which can guarantee the desired smoothness of the sought parameterization. Finally, some numerical examples are presented, which show that the PINNs-based approach is robust. Indeed, the produced mapping does not exhibit folding or self-intersection at the interior of the domain and, also, for highly non convex shapes, despite few faulty points near the boundaries, has better shape-measures, e.g., lower values of the Winslow functional

    Spline parameterization method for 2D and 3D geometries based on T-mesh optimization

    Get PDF
    [EN]We present a method to obtain high quality spline parameterization of 2D and 3D geometries for their use in isogeometric analysis. As input data, the proposed method demands a boundary representation of the domain, and it constructs automatically a spline transformation between the physical and parametric domains. Parameterization of the interior of the object is obtained by deforming isomorphically an adapted parametric T-mesh onto the physical domain by applying a T-mesh untangling and smoothing procedure, which is the key of the method. Mesh optimization is based on the mean ratio shape quality measure. The spline representation of the geometry is calculated by imposing interpolation conditions using the data provided by one-to-one correspondence between the meshes of the parametric and physical domains. We give a detailed description of the proposed technique and show some examples. Also, we present some examples of the application of isogeometric analysis in geometries parameterized with our method.Secretaría de Estado de Universidades e Investigación del Ministerio de Economía y Competitividad del Gobierno de España y fondos FEDER; Programa de FPU 12/00202 del Ministerio de Educación, Cultura y Deporte; Programa de FPI propio de la Universidad de Las Palmas de Gran Canari
    • …
    corecore