732 research outputs found

    Planar digraphs without large acyclic sets

    Full text link
    Given a directed graph, an acyclic set is a set of vertices inducing a subgraph with no directed cycle. In this note we show that there exist oriented planar graphs of order nn for which the size of the maximum acyclic set is at most n+12\lceil \frac{n+1}{2} \rceil, for any nn. This disproves a conjecture of Harutyunyan and shows that a question of Albertson is best possible.Comment: 3 pages, 1 figur

    Acyclic Subgraphs of Planar Digraphs

    Get PDF
    An acyclic set in a digraph is a set of vertices that induces an acyclic subgraph. In 2011, Harutyunyan conjectured that every planar digraph on nn vertices without directed 2-cycles possesses an acyclic set of size at least 3n/53n/5. We prove this conjecture for digraphs where every directed cycle has length at least 8. More generally, if gg is the length of the shortest directed cycle, we show that there exists an acyclic set of size at least (13/g)n(1 - 3/g)n.Comment: 9 page

    On the Complexity of Digraph Colourings and Vertex Arboricity

    Full text link
    It has been shown by Bokal et al. that deciding 2-colourability of digraphs is an NP-complete problem. This result was later on extended by Feder et al. to prove that deciding whether a digraph has a circular pp-colouring is NP-complete for all rational p>1p>1. In this paper, we consider the complexity of corresponding decision problems for related notions of fractional colourings for digraphs and graphs, including the star dichromatic number, the fractional dichromatic number and the circular vertex arboricity. We prove the following results: Deciding if the star dichromatic number of a digraph is at most pp is NP-complete for every rational p>1p>1. Deciding if the fractional dichromatic number of a digraph is at most pp is NP-complete for every p>1,p2p>1, p \neq 2. Deciding if the circular vertex arboricity of a graph is at most pp is NP-complete for every rational p>1p>1. To show these results, different techniques are required in each case. In order to prove the first result, we relate the star dichromatic number to a new notion of homomorphisms between digraphs, called circular homomorphisms, which might be of independent interest. We provide a classification of the computational complexities of the corresponding homomorphism colouring problems similar to the one derived by Feder et al. for acyclic homomorphisms.Comment: 21 pages, 1 figur

    On Directed Feedback Vertex Set parameterized by treewidth

    Get PDF
    We study the Directed Feedback Vertex Set problem parameterized by the treewidth of the input graph. We prove that unless the Exponential Time Hypothesis fails, the problem cannot be solved in time 2o(tlogt)nO(1)2^{o(t\log t)}\cdot n^{\mathcal{O}(1)} on general directed graphs, where tt is the treewidth of the underlying undirected graph. This is matched by a dynamic programming algorithm with running time 2O(tlogt)nO(1)2^{\mathcal{O}(t\log t)}\cdot n^{\mathcal{O}(1)}. On the other hand, we show that if the input digraph is planar, then the running time can be improved to 2O(t)nO(1)2^{\mathcal{O}(t)}\cdot n^{\mathcal{O}(1)}.Comment: 20

    Small feedback vertex sets in planar digraphs

    Full text link
    Let GG be a directed planar graph on nn vertices, with no directed cycle of length less than g4g\ge 4. We prove that GG contains a set XX of vertices such that GXG-X has no directed cycle, and X5n59|X|\le \tfrac{5n-5}9 if g=4g=4, X2n54|X|\le \tfrac{2n-5}4 if g=5g=5, and X2n6g|X|\le \tfrac{2n-6}{g} if g6g\ge 6. This improves recent results of Golowich and Rolnick.Comment: 5 pages, 1 figure - v3 final versio

    Complete Acyclic Colorings

    Full text link
    We study two parameters that arise from the dichromatic number and the vertex-arboricity in the same way that the achromatic number comes from the chromatic number. The adichromatic number of a digraph is the largest number of colors its vertices can be colored with such that every color induces an acyclic subdigraph but merging any two colors yields a monochromatic directed cycle. Similarly, the a-vertex arboricity of an undirected graph is the largest number of colors that can be used such that every color induces a forest but merging any two yields a monochromatic cycle. We study the relation between these parameters and their behavior with respect to other classical parameters such as degeneracy and most importantly feedback vertex sets.Comment: 17 pages, no figure

    Cuts in matchings of 3-connected cubic graphs

    Full text link
    We discuss conjectures on Hamiltonicity in cubic graphs (Tait, Barnette, Tutte), on the dichromatic number of planar oriented graphs (Neumann-Lara), and on even graphs in digraphs whose contraction is strongly connected (Hochst\"attler). We show that all of them fit into the same framework related to cuts in matchings. This allows us to find a counterexample to the conjecture of Hochst\"attler and show that the conjecture of Neumann-Lara holds for all planar graphs on at most 26 vertices. Finally, we state a new conjecture on bipartite cubic oriented graphs, that naturally arises in this setting.Comment: 12 pages, 5 figures, 1 table. Improved expositio

    Are there any good digraph width measures?

    Full text link
    Several different measures for digraph width have appeared in the last few years. However, none of them shares all the "nice" properties of treewidth: First, being \emph{algorithmically useful} i.e. admitting polynomial-time algorithms for all \MS1-definable problems on digraphs of bounded width. And, second, having nice \emph{structural properties} i.e. being monotone under taking subdigraphs and some form of arc contractions. As for the former, (undirected) \MS1 seems to be the least common denominator of all reasonably expressive logical languages on digraphs that can speak about the edge/arc relation on the vertex set.The latter property is a necessary condition for a width measure to be characterizable by some version of the cops-and-robber game characterizing the ordinary treewidth. Our main result is that \emph{any reasonable} algorithmically useful and structurally nice digraph measure cannot be substantially different from the treewidth of the underlying undirected graph. Moreover, we introduce \emph{directed topological minors} and argue that they are the weakest useful notion of minors for digraphs
    corecore