121 research outputs found

    Enhancing Near-Field Sensing and Communications with Sparse Arrays: Potentials, Challenges, and Emerging Trends

    Full text link
    As a promising technique, extremely large-scale (XL)-arrays offer potential solutions for overcoming the severe path loss in millimeter-wave (mmWave) and TeraHertz (THz) channels, crucial for enabling 6G. Nevertheless, XL-arrays introduce deviations in electromagnetic propagation compared to traditional arrays, fundamentally challenging the assumption with the planar-wave model. Instead, it ushers in the spherical-wave (SW) model to accurately represent the near-field propagation characteristics, significantly increasing signal processing complexity. Fortunately, the SW model shows remarkable benefits on sensing and communications (S\&C), e.g., improving communication multiplexing capability, spatial resolution, and degrees of freedom. In this context, this article first overviews hardware/algorithm challenges, fundamental potentials, promising applications of near-field S\&C enabled by XL-arrays. To overcome the limitations of existing XL-arrays with dense uniform array layouts and improve S\&C applications, we introduce sparse arrays (SAs). Exploring their potential, we propose XL-SAs for mmWave/THz systems using multi-subarray designs. Finally, several applications, challenges and resarch directions are identified

    MmWave MU-MIMO for Aerial Networks

    Full text link
    Millimeter wave offers high bandwidth for air-to-air (A2A) communication. In this paper, we evaluate the rate performance of a multiuser MIMO (MU-MIMO) configuration where several aircraft communicate with a central hub. We consider a hybrid subarray architecture, single path channels, and realistic atmospheric attenuation effects. We propose a mathematical framework for the analysis of millimeter wave (mmWave) MU-MIMO networks. Via Monte Carlo simulation, we demonstrate that mmWave is a promising technology for delivering gigabit connectivity in next-generation aerial networks.Comment: 5 pages, 4 figures, accepted at ISWCS Special Session 7: Vehicle-to-Everything (V2X) Communications. Small correction to equation (9) that I noticed after publication. Code available at: https://github.com/travisCuvelier/mmWaveAerialNetwork

    On the Number of RF Chains and Phase Shifters, and Scheduling Design with Hybrid Analog-Digital Beamforming

    Full text link
    This paper considers hybrid beamforming (HB) for downlink multiuser massive multiple input multiple output (MIMO) systems with frequency selective channels. For this system, first we determine the required number of radio frequency (RF) chains and phase shifters (PSs) such that the proposed HB achieves the same performance as that of the digital beamforming (DB) which utilizes NN (number of transmitter antennas) RF chains. We show that the performance of the DB can be achieved with our HB just by utilizing rtr_t RF chains and 2rt(N−rt+1)2r_t(N-r_t + 1) PSs, where rt≤Nr_t \leq N is the rank of the combined digital precoder matrices of all sub-carriers. Second, we provide a simple and novel approach to reduce the number of PSs with only a negligible performance degradation. Numerical results reveal that only 20−4020-40 PSs per RF chain are sufficient for practically relevant parameter settings. Finally, for the scenario where the deployed number of RF chains (Na)(N_a) is less than rtr_t, we propose a simple user scheduling algorithm to select the best set of users in each sub-carrier. Simulation results validate theoretical expressions, and demonstrate the superiority of the proposed HB design over the existing HB designs in both flat fading and frequency selective channels.Comment: IEEE Transactions on Wireless Communications (Minor Revision

    Sparse Array Architectures for Wireless Communication and Radar Applications

    Get PDF
    This thesis focuses on sparse array architectures for the next generation of wireless communication, known as fifth-generation (5G), and automotive radar direction-of-arrival (DOA) estimation. For both applications, array spatial resolution plays a critical role to better distinguish multiple users/sources. Two novel base station antenna (BSA) configurations and a new sparse MIMO radar, which both outperform their conventional counterparts, are proposed.\ua0We first develop a multi-user (MU) multiple-input multiple-output (MIMO) simulation platform which incorporates both antenna and channel effects based on standard network theory. The combined transmitter-channel-receiver is modeled by cascading Z-matrices to interrelate the port voltages/currents to one another in the linear network model. The herein formulated channel matrix includes physical antenna and channel effects and thus enables us to compute the actual port powers. This is in contrast with the assumptions of isotropic radiators without mutual coupling effects which are commonly being used in the Wireless Community.\ua0Since it is observed in our model that the sum-rate of a MU-MIMO system can be adversely affected by antenna gain pattern variations, a novel BSA configuration is proposed by combining field-of-view (FOV) sectorization, array panelization and array sparsification. A multi-panel BSA, equipped with sparse arrays in each panel, is presented with the aim of reducing the implementation complexities and maintaining or even improving the sum-rate.\ua0We also propose a capacity-driven array synthesis in the presence of mutual coupling for a MU-MIMO system. We show that the appearance of\ua0grating lobes is degrading the system capacity and cannot be disregarded in a MU communication, where space division\ua0multiple access (SDMA) is applied. With the aid of sparsity and aperiodicity, the adverse effects of grating lobes and mutual coupling\ua0are suppressed and capacity is enhanced. This is performed by proposing a two-phase optimization. In Phase I, the problem\ua0is relaxed to a convex optimization by ignoring the mutual coupling and weakening the constraints. The solution of Phase I\ua0is used as the initial guess for the genetic algorithm (GA) in phase II, where the mutual coupling is taken into account. The\ua0proposed hybrid algorithm outperforms the conventional GA with random initialization.\ua0A novel sparse MIMO radar is presented for high-resolution single snapshot DOA estimation. Both transmit and receive arrays are divided into two uniform arrays with increased inter-element spacings to generate two uniform sparse virtual arrays. Since virtual arrays are uniform, conventional spatial smoothing can be applied for temporal correlation suppression among sources. Afterwards, the spatially smoothed virtual arrays satisfy the co-primality concept to avoid DOA ambiguities. Physical antenna effects are incorporated in the received signal model and their effects on the DOA estimation performance are investigated
    • …
    corecore