28,132 research outputs found

    Max flow vitality in general and stst-planar graphs

    Full text link
    The \emph{vitality} of an arc/node of a graph with respect to the maximum flow between two fixed nodes ss and tt is defined as the reduction of the maximum flow caused by the removal of that arc/node. In this paper we address the issue of determining the vitality of arcs and/or nodes for the maximum flow problem. We show how to compute the vitality of all arcs in a general undirected graph by solving only 2(n−1)2(n-1) max flow instances and, In stst-planar graphs (directed or undirected) we show how to compute the vitality of all arcs and all nodes in O(n)O(n) worst-case time. Moreover, after determining the vitality of arcs and/or nodes, and given a planar embedding of the graph, we can determine the vitality of a `contiguous' set of arcs/nodes in time proportional to the size of the set.Comment: 12 pages, 3 figure

    Topological transition in disordered planar matching: combinatorial arcs expansion

    Full text link
    In this paper, we investigate analytically the properties of the disordered Bernoulli model of planar matching. This model is characterized by a topological phase transition, yielding complete planar matching solutions only above a critical density threshold. We develop a combinatorial procedure of arcs expansion that explicitly takes into account the contribution of short arcs, and allows to obtain an accurate analytical estimation of the critical value by reducing the global constrained problem to a set of local ones. As an application to a toy representation of the RNA secondary structures, we suggest generalized models that incorporate a one-to-one correspondence between the contact matrix and the RNA-type sequence, thus giving sense to the notion of effective non-integer alphabets.Comment: 28 pages, 6 figures, published versio

    Planar and Poly-Arc Lombardi Drawings

    Full text link
    In Lombardi drawings of graphs, edges are represented as circular arcs, and the edges incident on vertices have perfect angular resolution. However, not every graph has a Lombardi drawing, and not every planar graph has a planar Lombardi drawing. We introduce k-Lombardi drawings, in which each edge may be drawn with k circular arcs, noting that every graph has a smooth 2-Lombardi drawing. We show that every planar graph has a smooth planar 3-Lombardi drawing and further investigate topics connecting planarity and Lombardi drawings.Comment: Expanded version of paper appearing in the 19th International Symposium on Graph Drawing (GD 2011). 16 pages, 8 figure

    The hardness of routing two pairs on one face

    Full text link
    We prove the NP-completeness of the integer multiflow problem in planar graphs, with the following restrictions: there are only two demand edges, both lying on the infinite face of the routing graph. This was one of the open challenges concerning disjoint paths, explicitly asked by M\"uller. It also strengthens Schw\"arzler's recent proof of one of the open problems of Schrijver's book, about the complexity of the edge-disjoint paths problem with terminals on the outer boundary of a planar graph. We also give a directed acyclic reduction. This proves that the arc-disjoint paths problem is NP-complete in directed acyclic graphs, even with only two demand arcs
    • …
    corecore