2,000 research outputs found

    Planar Support for Non-piercing Regions and Applications

    Get PDF
    Given a hypergraph H=(X,S), a planar support for H is a planar graph G with vertex set X, such that for each hyperedge S in S, the sub-graph of G induced by the vertices in S is connected. Planar supports for hypergraphs have found several algorithmic applications, including several packing and covering problems, hypergraph coloring, and in hypergraph visualization. The main result proved in this paper is the following: given two families of regions R and B in the plane, each of which consists of connected, non-piercing regions, the intersection hypergraph H_R(B) = (B, {B_r}_{r in R}), where B_r = {b in B: b cap r != empty set} has a planar support. Further, such a planar support can be computed in time polynomial in |R|, |B|, and the number of vertices in the arrangement of the regions in R cup B. Special cases of this result include the setting where either the family R, or the family B is a set of points. Our result unifies and generalizes several previous results on planar supports, PTASs for packing and covering problems on non-piercing regions in the plane and coloring of intersection hypergraph of non-piercing regions

    Approximation Algorithm for Line Segment Coverage for Wireless Sensor Network

    Full text link
    The coverage problem in wireless sensor networks deals with the problem of covering a region or parts of it with sensors. In this paper, we address the problem of covering a set of line segments in sensor networks. A line segment ` is said to be covered if it intersects the sensing regions of at least one sensor distributed in that region. We show that the problem of finding the minimum number of sensors needed to cover each member in a given set of line segments in a rectangular area is NP-hard. Next, we propose a constant factor approximation algorithm for the problem of covering a set of axis-parallel line segments. We also show that a PTAS exists for this problem.Comment: 16 pages, 5 figures

    On Hypergraph Supports

    Full text link
    Let H=(X,E)\mathcal{H}=(X,\mathcal{E}) be a hypergraph. A support is a graph QQ on XX such that for each E∈EE\in\mathcal{E}, the subgraph of QQ induced on the elements in EE is connected. In this paper, we consider hypergraphs defined on a host graph. Given a graph G=(V,E)G=(V,E), with c:V→{r,b}c:V\to\{\mathbf{r},\mathbf{b}\}, and a collection of connected subgraphs H\mathcal{H} of GG, a primal support is a graph QQ on b(V)\mathbf{b}(V) such that for each H∈HH\in \mathcal{H}, the induced subgraph Q[b(H)]Q[\mathbf{b}(H)] on vertices b(H)=H∩c−1(b)\mathbf{b}(H)=H\cap c^{-1}(\mathbf{b}) is connected. A \emph{dual support} is a graph Q∗Q^* on H\mathcal{H} s.t. for each v∈Xv\in X, the induced subgraph Q∗[Hv]Q^*[\mathcal{H}_v] is connected, where Hv={H∈H:v∈H}\mathcal{H}_v=\{H\in\mathcal{H}: v\in H\}. We present sufficient conditions on the host graph and hyperedges so that the resulting support comes from a restricted family. We primarily study two classes of graphs: (1)(1) If the host graph has genus gg and the hypergraphs satisfy a topological condition of being \emph{cross-free}, then there is a primal and a dual support of genus at most gg. (2)(2) If the host graph has treewidth tt and the hyperedges satisfy a combinatorial condition of being \emph{non-piercing}, then there exist primal and dual supports of treewidth O(2t)O(2^t). We show that this exponential blow-up is sometimes necessary. As an intermediate case, we also study the case when the host graph is outerplanar. Finally, we show applications of our results to packing and covering, and coloring problems on geometric hypergraphs

    Improved Approximation Algorithm for Set Multicover with Non-Piercing Regions

    Get PDF
    In the Set Multicover problem, we are given a set system (X,?), where X is a finite ground set, and ? is a collection of subsets of X. Each element x ? X has a non-negative demand d(x). The goal is to pick a smallest cardinality sub-collection ?\u27 of ? such that each point is covered by at least d(x) sets from ?\u27. In this paper, we study the set multicover problem for set systems defined by points and non-piercing regions in the plane, which includes disks, pseudodisks, k-admissible regions, squares, unit height rectangles, homothets of convex sets, upward paths on a tree, etc. We give a polynomial time (2+?)-approximation algorithm for the set multicover problem (P, ?), where P is a set of points with demands, and ? is a set of non-piercing regions, as well as for the set multicover problem (?, P), where ? is a set of pseudodisks with demands, and P is a set of points in the plane, which is the hitting set problem with demands

    The ?-t-Net Problem

    Get PDF
    We study a natural generalization of the classical ?-net problem (Haussler - Welzl 1987), which we call the ?-t-net problem: Given a hypergraph on n vertices and parameters t and ? ? t/n, find a minimum-sized family S of t-element subsets of vertices such that each hyperedge of size at least ? n contains a set in S. When t=1, this corresponds to the ?-net problem. We prove that any sufficiently large hypergraph with VC-dimension d admits an ?-t-net of size O((1+log t)d/? log 1/?). For some families of geometrically-defined hypergraphs (such as the dual hypergraph of regions with linear union complexity), we prove the existence of O(1/?)-sized ?-t-nets. We also present an explicit construction of ?-t-nets (including ?-nets) for hypergraphs with bounded VC-dimension. In comparison to previous constructions for the special case of ?-nets (i.e., for t=1), it does not rely on advanced derandomization techniques. To this end we introduce a variant of the notion of VC-dimension which is of independent interest

    Flow and air-entrainment around partially submerged vertical cylinders

    Get PDF
    In this study, a partially submerged vertical cylinder is moved at constant velocity through water, which is initially at rest. During the motion, the wake behind the cylinder induces free-surface deformation. Eleven cylinders, with diameters from D=1.4D=1.4 to 16 cm, were tested at two different conditions: (i) constant immersed height hh and (ii) constant h/Dh/D. The range of translation velocities and diameters are in the regime of turbulent wake with experiments carried out for 4500<Re<240 0004500<Re<240 \,000 and 0.2<Fr<2.40.2<Fr<2.4, where ReRe and FrFr are the Reynolds and Froude numbers based on DD. The focus here is on drag force measurements and relatively strong free-surface deformation up to air-entrainment. Specifically, two modes of air-entraiment have been uncovered: (i) in the cavity along the cylinder wall and (ii) in the wake of the cylinder. A scaling for the critical velocity for air-entrainment in the cavity has been observed in agreement with a simple model. Furthermore, for Fr>1.2Fr>1.2, the drag force varies linearly with FrFr
    • …
    corecore