53,321 research outputs found

    Minimum Cycle Base of Graphs Identified by Two Planar Graphs

    Get PDF
    In this paper, we study the minimum cycle base of the planar graphs obtained from two 2-connected planar graphs by identifying an edge (or a cycle) of one graph with the corresponding edge (or cycle) of another, related with map geometries, i.e., Smarandache 2-dimensional manifolds

    A formula for Pl\"ucker coordinates associated with a planar network

    Full text link
    For a planar directed graph G, Postnikov's boundary measurement map sends positive weight functions on the edges of G onto the appropriate totally nonnegative Grassmann cell. We establish an explicit formula for Postnikov's map by expressing each Pluecker coordinate as a ratio of two combinatorially defined polynomials in the edge weights, with positive integer coefficients. In the non-planar setting, we show that a similar formula holds for special choices of Pluecker coordinates.Comment: 15 pages, 6 figures. Extensive additions, including a generalization for arbitrarily oriented planar graphs and a formula for some Pluecker coordinates of non-planar perfectly oriented graph

    Dissections, orientations, and trees, with applications to optimal mesh encoding and to random sampling

    Full text link
    We present a bijection between some quadrangular dissections of an hexagon and unrooted binary trees, with interesting consequences for enumeration, mesh compression and graph sampling. Our bijection yields an efficient uniform random sampler for 3-connected planar graphs, which turns out to be determinant for the quadratic complexity of the current best known uniform random sampler for labelled planar graphs [{\bf Fusy, Analysis of Algorithms 2005}]. It also provides an encoding for the set P(n)\mathcal{P}(n) of nn-edge 3-connected planar graphs that matches the entropy bound 1nlog2P(n)=2+o(1)\frac1n\log_2|\mathcal{P}(n)|=2+o(1) bits per edge (bpe). This solves a theoretical problem recently raised in mesh compression, as these graphs abstract the combinatorial part of meshes with spherical topology. We also achieve the {optimal parametric rate} 1nlog2P(n,i,j)\frac1n\log_2|\mathcal{P}(n,i,j)| bpe for graphs of P(n)\mathcal{P}(n) with ii vertices and jj faces, matching in particular the optimal rate for triangulations. Our encoding relies on a linear time algorithm to compute an orientation associated to the minimal Schnyder wood of a 3-connected planar map. This algorithm is of independent interest, and it is for instance a key ingredient in a recent straight line drawing algorithm for 3-connected planar graphs [\bf Bonichon et al., Graph Drawing 2005]

    Stack and Queue Layouts via Layered Separators

    Full text link
    It is known that every proper minor-closed class of graphs has bounded stack-number (a.k.a. book thickness and page number). While this includes notable graph families such as planar graphs and graphs of bounded genus, many other graph families are not closed under taking minors. For fixed gg and kk, we show that every nn-vertex graph that can be embedded on a surface of genus gg with at most kk crossings per edge has stack-number O(logn)\mathcal{O}(\log n); this includes kk-planar graphs. The previously best known bound for the stack-number of these families was O(n)\mathcal{O}(\sqrt{n}), except in the case of 11-planar graphs. Analogous results are proved for map graphs that can be embedded on a surface of fixed genus. None of these families is closed under taking minors. The main ingredient in the proof of these results is a construction proving that nn-vertex graphs that admit constant layered separators have O(logn)\mathcal{O}(\log n) stack-number.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016
    corecore