1,195 research outputs found

    Self-Motions of General 3-RPR Planar Parallel Robots

    Get PDF
    This paper studies the kinematic geometry of general 3-RPR planar parallel robots with actuated base joints. These robots, while largely overlooked, have simple direct kinematics and large singularity-free workspace. Furthermore, their kinematic geometry is the same as that of a newly developed parallel robot with SCARA-type motions. Starting from the direct and inverse kinematic model, the expressions for the singularity loci of 3-RPR planar parallel robots are determined. Then, the global behaviour at all singularities is geometrically described by studying the degeneracy of the direct kinematic model. Special cases of self-motions are then examined and the degree of freedom gained in such special configurations is kinematically interpreted. Finally, a practical example is discussed and experimental validations performed on an actual robot prototype are presented

    Classification of direct kinematics to planar generalized Stewart platforms

    Get PDF
    AbstractThis paper presents the classification of direct kinematics for the planar generalized Stewart platform (GSP) which consists of two rigid bodies connected by three constraints between three pairs of points or lines in the base and the moving platforms. For each of the sixteen forms of planar GSPs, we give the explicit conditions on the parameters for the GSPs to have a given number of real solutions

    Using Parallel Platforms as Climbing Robots

    Get PDF

    Dynamics of the Orthoglide parallel robot

    Get PDF
    Recursive matrix relations for kinematics and dynamics of the Orthoglide parallel robot having three concurrent prismatic actuators are established in this paper. These are arranged according to the Cartesian coordinate system with fixed orientation, which means that the actuating directions are normal to each other. Three identical legs connecting to the moving platform are located on three planes being perpendicular to each other too. Knowing the position and the translation motion of the platform, we develop the inverse kinematics problem and determine the position, velocity and acceleration of each element of the robot. Further, the principle of virtual work is used in the inverse dynamic problem. Some matrix equations offer iterative expressions and graphs for the input forces and the powers of the three actuators

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Parallel moving mechanical systems

    Get PDF
    Moving mechanical systems parallel structures are solid, fast, and accurate. Between parallel systems it is to be noticed Stewart platforms, as the oldest systems, fast, solid and precise. The work outlines a few main elements of Stewart platforms. Begin with the geometry platform, kinematic elements of it, and presented then and a few items of dynamics. Dynamic primary element on it means the determination mechanism kinetic energy of the entire Stewart platforms. It is then in a record tail cinematic mobile by a method dot matrix of rotation. If a structural mottoelement consists of two moving elements which translates relative, drive train and especially dynamic it is more convenient to represent the mottoelement as a single moving components. We have thus seven moving parts (the six motoelements or feet to which is added mobile platform 7) and one fixed

    Kinematic and dynamic analysis of spatial six degree of freedom parallel structure manipulator

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2003Includes bibliographical references (leaves: 63-69)Text in English; Abstract: Turkish and Englishviii, 86 leavesThis thesis covers a study on kinematic and dynamic analysis of a new type of spatial six degree of freedom parallel manipulator. The background for structural synthesis of parallel manipulators is also given. The structure of the said manipulator is especially designed to cover a larger workspace then well-known Stewart Platform and its derivates. The main point of interest for this manipulator is its hybrid actuating system, consisting of three revolute and three linear actuators.Kinematic analysis comprises forward and inverse displacement analysis. Screw Theory and geometric constraint considerations were the main tools used. While it was possible to derive a closed-form solution for the inverse displacement analysis, a numerical approach was used to solve the problem of forward displacement analysis. Based on the results of the kinematic analysis, a rough workspace study of the manipulator is also accomplished. On the dynamics part, attention has been given on inverse dynamics problem using Lagrange-Euler approach.Both high and lower level software were heavily utilized. Also computer software called .CASSoM. and .iMIDAS. are developed to be used for structural synthesis and inverse displacement analysis. The major contribution of the study to the scientific community is the proposal of a new type of parallel manipulator, which has to be studied extensively regarding its other interesting properties

    New geometric approaches to the analysis and design of Stewart-Gough platforms

    Get PDF
    In general, rearranging the legs of a Stewart-Gough platform, i.e., changing the locations of its leg attachments, modifies the platform singularity locus in a rather unexpected way. Nevertheless, some leg rearrangements have been recently found to leave singularities invariant. Identification of such rearrangements is useful not only for the kinematic analysis of the platforms, but also as a tool to redesign manipulators avoiding the implementation of multiple spherical joints, which are difficult to construct and have a small motion range. In this study, a summary of these singularity-invariant leg rearrangements is presented, and their practical implications are illustrated with several examples including well-known architectures.The authors gratefully acknowledge funding from the Generalitat de Catalunya through the Robotics group (SRG0155).Peer Reviewe
    • …
    corecore