1,128 research outputs found

    Explicit isoperimetric constants and phase transitions in the random-cluster model

    Full text link
    The random-cluster model is a dependent percolation model that has applications in the study of Ising and Potts models. In this paper, several new results are obtained for the random-cluster model on nonamenable graphs with cluster parameter q≥1q\geq 1. Among these, the main ones are the absence of percolation for the free random-cluster measure at the critical value, and examples of planar regular graphs with regular dual where \pc^\f (q) > \pu^\w (q) for qq large enough. The latter follows from considerations of isoperimetric constants, and we give the first nontrivial explicit calculations of such constants. Such considerations are also used to prove non-robust phase transition for the Potts model on nonamenable regular graphs

    The planar Cayley graphs are effectively enumerable I: consistently planar graphs

    Get PDF
    We obtain an effective enumeration of the family of finitely generated groups admitting a faithful, properly discontinuous action on some 2-manifold contained in the sphere. This is achieved by introducing a type of group presentation capturing exactly these groups. Extending this in a companion paper, we find group presentations capturing the planar finitely generated Cayley graphs. Thus we obtain an effective enumeration of these Cayley graphs, yielding in particular an affirmative answer to a question of Droms et al.Comment: To appear in Combinatorica. The second half of the previous version is arXiv:1901.0034

    Uniqueness and non-uniqueness in percolation theory

    Full text link
    This paper is an up-to-date introduction to the problem of uniqueness versus non-uniqueness of infinite clusters for percolation on Zd{\mathbb{Z}}^d and, more generally, on transitive graphs. For iid percolation on Zd{\mathbb{Z}}^d, uniqueness of the infinite cluster is a classical result, while on certain other transitive graphs uniqueness may fail. Key properties of the graphs in this context turn out to be amenability and nonamenability. The same problem is considered for certain dependent percolation models -- most prominently the Fortuin--Kasteleyn random-cluster model -- and in situations where the standard connectivity notion is replaced by entanglement or rigidity. So-called simultaneous uniqueness in couplings of percolation processes is also considered. Some of the main results are proved in detail, while for others the proofs are merely sketched, and for yet others they are omitted. Several open problems are discussed.Comment: Published at http://dx.doi.org/10.1214/154957806000000096 in the Probability Surveys (http://www.i-journals.org/ps/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore