25,084 research outputs found

    Plan and Intent Recognition in a Multi-agent System for Collective Box Pushing

    Get PDF
    This is the published version.In a distributed multi-agent system, an idle agent may be available to assist other agents in the system. An agent architecture called intent recognition is proposed in this article to accomplish this with minimal communication. To assist other agents in the system, an agent performing recognition observes the tasks other agents are performing. Unlike the much-studied field of plan recognition, the overall intent of an agent is recognized instead of a specific plan. The observing agent may use capabilities that it has not observed. In this study, the key research question is: What are intent-recognition systems and how can these be used to have agents autonomously assist each other effectively and efficiently? A conceptual framework is proposed to address this question. An implementation of the conceptual framework is tested and evaluated. A set of metrics, including task time and number of communications, is used to compare the performance of plan recognition and intent recognition. This research shows that under certain conditions, an intent-recognition system is more efficient than a plan recognition system

    Intent Recognition in Multi-Agent Systems: Collective Box Pushing and Cow Herding

    Get PDF
    In a multi-agent system, an idle agent may be available to assist other agents in the system. An agent architecture called intent recognition is proposed to accomplish this with minimal communication. In order to assist other agents in the system, an agent performing recognition observes the tasks other agents are performing. Unlike the much studied field of plan recognition, the overall intent of an agent is recognized instead of a specific plan. The observing agent may use capabilities that it has not observed. This study focuses on the key research questions of: (1) What are intent recognition systems? (2) How can these be used in order to have agents autonomously assist each other effectively and efficiently? A conceptual framework is proposed for intent recognition systems. An implementation of the conceptual framework is tested and evaluated. We hypothesize that using intent recognition in a multi-agent system increases utility (where utility is domain specific) and decreases the amount of communication. We test our hypotheses using two experimental series in the domains of Box Pushing, where agents attempt to push boxes to specified locations; and Cow Herding, where agents attempt to herd cow agents into team corrals. A set of metrics, including task time and number of communications, is used to compare the performance of plan recognition and intent recognition. In both sets of experimental series, intent recognition agents communicate fewer times than plan recognition agents. In addition, unlike plan recognition, when agents use the novel approach of intent recognition, they select unobserved actions to perform, which was seen in both experimental series. Intent recognition agents were also able to outperform plan recognition agents by sometimes reducing task completion time in the Box Pushing domain and consistently scoring more points in the Cow Herding domain. This research shows that under certain conditions, an intent recognition system is more efficient than a plan recognition system. The advantage of intent recognition over plan recognition becomes more apparent in complex domains

    On Advanced Template-based Interpretation As Applied To Intention Recognition In A Strategic Environment

    Get PDF
    An area of study that has received much attention over the past few decades is simulations involving threat assessment in military scenarios. Recently, much research has emerged concerning the recognition of troop movements and formations in non-combat simulations. Additionally, there have been efforts towards the detection and assessment of various types of malicious intentions. One such work by Akridge addressed the issue of Strategic Intention Recognition, but fell short in the detection of tactics that it could not detect without somehow manipulating the environment. Therefore, the aim of this thesis is to address the problem of recognizing an opponent\u27s intent in a strategic environment where the system can think ahead in time to see the agent\u27s plan. To approach the problem, a structured form of knowledge called Template-Based Interpretation is borrowed from the work of others and enhanced to reason in a temporally dynamic simulation

    Practical aspects of designing and developing a multimodal embodied agent

    Get PDF
    2021 Spring.Includes bibliographical references.This thesis reviews key elements that went into the design and construction of the CSU CwC Embodied agent, also known as the Diana System. The Diana System has been developed over five years by a joint team of researchers at three institutions – Colorado State University, Brandeis University and the University of Florida. Over that time, I contributed to this overall effort and in this thesis, I present a practical review of key elements involved in designing and constructing the system. Particular attention is paid to Diana's multimodal capabilities that engage asynchronously and concurrently to support realistic interactions with the user. Diana can communicate in visual as well as auditory modalities. She can understand a variety of hand gestures for object manipulation, deixis, etc. and can gesture in return. Diana can also hold a conversation with the user in spoken and/or written English. Gestures and speech are often at play simultaneously, supplementing and complementing each other. Diana conveys her attention through several non-verbal cues like slower blinking when inattentive, keeping her gaze on the subject of her attention, etc. Finally, her ability to express emotions with facial expressions adds another crucial human element to any user interaction with the system. Central to Diana's capabilities is a blackboard architecture coordinating a hierarchy of modular components, each controlling a part of Diana's perceptual, cognitive, and motor abilities. The modular design facilitates contributions from multiple disciplines, namely VoxSim/VoxML with Text-to-speech/Automatic Speech Recognition systems for natural language understanding, deep neural networks for gesture recognition, 3D computer animation systems, etc. – all integrated within the Unity game engine to create an embodied, intelligent agent that is Diana. The primary contribution of this thesis is to provide a detailed explanation of Diana's internal working along with a thorough background of the research that supports these technologies

    MRoCS : a new multi-robot communication system based on passive action recognition

    Get PDF
    Multi-robot search-and-rescue missions often face major challenges in adverse environments due to the limitations of traditional implicit and explicit communication. This paper proposes a novel multi-robot communication system (MRoCS), which uses a passive action recognition technique that overcomes the shortcomings of traditional models. The proposed MRoCS relies on individual motion, by mimicking the waggle dance of honey bees and thus forming and recognising different patterns accordingly. The system was successfully designed and implemented in simulation and with real robots. Experimental results show that, the pattern recognition process successfully reported high sensitivity with good precision in all cases for three different patterns thus corroborating our hypothesis

    Building Brains for Bodies

    Get PDF
    We describe a project to capitalize on newly available levels of computational resources in order to understand human cognition. We will build an integrated physical system including vision, sound input and output, and dextrous manipulation, all controlled by a continuously operating large scale parallel MIMD computer. The resulting system will learn to "think'' by building on its bodily experiences to accomplish progressively more abstract tasks. Past experience suggests that in attempting to build such an integrated system we will have to fundamentally change the way artificial intelligence, cognitive science, linguistics, and philosophy think about the organization of intelligence. We expect to be able to better reconcile the theories that will be developed with current work in neuroscience

    Resist Board Meeting, Aug. 3, 2003

    Get PDF

    Factors shaping the evolution of electronic documentation systems

    Get PDF
    The main goal is to prepare the space station technical and managerial structure for likely changes in the creation, capture, transfer, and utilization of knowledge. By anticipating advances, the design of Space Station Project (SSP) information systems can be tailored to facilitate a progression of increasingly sophisticated strategies as the space station evolves. Future generations of advanced information systems will use increases in power to deliver environmentally meaningful, contextually targeted, interconnected data (knowledge). The concept of a Knowledge Base Management System is emerging when the problem is focused on how information systems can perform such a conversion of raw data. Such a system would include traditional management functions for large space databases. Added artificial intelligence features might encompass co-existing knowledge representation schemes; effective control structures for deductive, plausible, and inductive reasoning; means for knowledge acquisition, refinement, and validation; explanation facilities; and dynamic human intervention. The major areas covered include: alternative knowledge representation approaches; advanced user interface capabilities; computer-supported cooperative work; the evolution of information system hardware; standardization, compatibility, and connectivity; and organizational impacts of information intensive environments

    Punishing Artificial Intelligence: Legal Fiction or Science Fiction

    Get PDF
    Whether causing flash crashes in financial markets, purchasing illegal drugs, or running over pedestrians, AI is increasingly engaging in activity that would be criminal for a natural person, or even an artificial person like a corporation. We argue that criminal law falls short in cases where an AI causes certain types of harm and there are no practically or legally identifiable upstream criminal actors. This Article explores potential solutions to this problem, focusing on holding AI directly criminally liable where it is acting autonomously and irreducibly. Conventional wisdom holds that punishing AI is incongruous with basic criminal law principles such as the capacity for culpability and the requirement of a guilty mind. Drawing on analogies to corporate and strict criminal liability, as well as familiar imputation principles, we show how a coherent theoretical case can be constructed for AI punishment. AI punishment could result in general deterrence and expressive benefits, and it need not run afoul of negative limitations such as punishing in excess of culpability. Ultimately, however, punishing AI is not justified, because it might entail significant costs and it would certainly require radical legal changes. Modest changes to existing criminal laws that target persons, together with potentially expanded civil liability, are a better solution to AI crime
    • …
    corecore