5,359 research outputs found

    The Optimal Employment of Supply Chain management Decision Support Agents: an Exploratory Study

    Get PDF
    The issue of interest here is the employment of decision support agents in supply chain management. The study discusses the sorts of supply-related managerial tasks that decision support agents have been assigned, and how well or poorly they have performed these tasks. This research suggests the reasons why organizations might elect to invest supply chain management responsibilities in decision support agents rather than human functionaries. Finally, this research concludes by presenting a best fit construct for optimal decision making opportunities

    An Adversarial Super-Resolution Remedy for Radar Design Trade-offs

    Full text link
    Radar is of vital importance in many fields, such as autonomous driving, safety and surveillance applications. However, it suffers from stringent constraints on its design parametrization leading to multiple trade-offs. For example, the bandwidth in FMCW radars is inversely proportional with both the maximum unambiguous range and range resolution. In this work, we introduce a new method for circumventing radar design trade-offs. We propose the use of recent advances in computer vision, more specifically generative adversarial networks (GANs), to enhance low-resolution radar acquisitions into higher resolution counterparts while maintaining the advantages of the low-resolution parametrization. The capability of the proposed method was evaluated on the velocity resolution and range-azimuth trade-offs in micro-Doppler signatures and FMCW uniform linear array (ULA) radars, respectively.Comment: Accepted in EUSIPCO 2019, 5 page

    On risk-based maintenance: A comprehensive review of three approaches to track the impact of consequence modelling for predicting maintenance actions

    Get PDF
    Since gas plants are progressively increasing near urban areas, a comprehensive tool to plan maintenance and reduce the risk arising from their operations is required. To this end, a comparison of three Risk-Based Maintenance methodologies able to point out maintenance priorities for the most critical components, is presented in this paper. Moreover, while the literature is mostly focused on probabilistic analysis, a particular attention is directed towards consequence analysis throughout this study. The first developed technique is characterized by a Hierarchical Bayesian Network to perform the occurrence analysis and a Failure Modes, Effects and Criticality Analysis to assess the magnitude of the adverse outcomes. The second approach is a Quantitative Risk Analysis carried out via a software named Safeti. Finally, another software called Synergi Plant is adopted for the third methodology, which provides a Risk-Based Inspection plan, through a semiquantitative risk analysis. The proposed study can assist asset manager in adopting the most appropriate methodology to their context, while highlighting priority components. To demonstrate the applicability of the approaches and compare their rankings, a Natural Gas Regulating and Measuring Station is considered as case study. The results showed that the most suited method strongly depends on the available data

    Multi-Robot Symbolic Task and Motion Planning Leveraging Human Trust Models: Theory and Applications

    Get PDF
    Multi-robot systems (MRS) can accomplish more complex tasks with two or more robots and have produced a broad set of applications. The presence of a human operator in an MRS can guarantee the safety of the task performing, but the human operators can be subject to heavier stress and cognitive workload in collaboration with the MRS than the single robot. It is significant for the MRS to have the provable correct task and motion planning solution for a complex task. That can reduce the human workload during supervising the task and improve the reliability of human-MRS collaboration. This dissertation relies on formal verification to provide the provable-correct solution for the robotic system. One of the challenges in task and motion planning under temporal logic task specifications is developing computationally efficient MRS frameworks. The dissertation first presents an automaton-based task and motion planning framework for MRS to satisfy finite words of linear temporal logic (LTL) task specifications in parallel and concurrently. Furthermore, the dissertation develops a computational trust model to improve the human-MRS collaboration for a motion task. Notably, the current works commonly underemphasize the environmental attributes when investigating the impacting factors of human trust in robots. Our computational trust model builds a linear state-space (LSS) equation to capture the influence of environment attributes on human trust in an MRS. A Bayesian optimization based experimental design (BOED) is proposed to sequentially learn the human-MRS trust model parameters in a data-efficient way. Finally, the dissertation shapes a reward function for the human-MRS collaborated complex task by referring to the above LTL task specification and computational trust model. A Bayesian active reinforcement learning (RL) algorithm is used to concurrently learn the shaped reward function and explore the most trustworthy task and motion planning solution
    • …
    corecore