96,149 research outputs found

    3D beam-column finite element under non-uniform shear stress distribution due to shear and torsion

    Get PDF
    The paper discusses the application of a 2-node, three-dimensional (3D) beam-column finite element with an enhanced fiber cross-section model to the inelastic response analysis of concrete members. The element accounts for the local distribution of strains and stresses under the coupling of axial, flexural, shear, and torsional effects with an enriched kinematic description that accounts for the out-of-plane deformations of the cross-section. To this end the warping displacements are interpolated with the addition of a variable number of local degrees of freedom. The material response is governed by a 3D nonlinear stress-strain relation with damage that describes the degrading mechanisms of typical engineering materials under the coupling of normal and shear stresses. The element formulation is validated by comparing the numerical results with measured data from the response of two prismatic concrete beams under torsional loading and with standard beam formulations

    Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior

    Full text link
    Bayesian optimization usually assumes that a Bayesian prior is given. However, the strong theoretical guarantees in Bayesian optimization are often regrettably compromised in practice because of unknown parameters in the prior. In this paper, we adopt a variant of empirical Bayes and show that, by estimating the Gaussian process prior from offline data sampled from the same prior and constructing unbiased estimators of the posterior, variants of both GP-UCB and probability of improvement achieve a near-zero regret bound, which decreases to a constant proportional to the observational noise as the number of offline data and the number of online evaluations increase. Empirically, we have verified our approach on challenging simulated robotic problems featuring task and motion planning.Comment: Proceedings of the Thirty-second Conference on Neural Information Processing Systems, 201

    Selection and static calibration of the Marsh J1678 pressure gauge

    Get PDF
    During the experimental testing of the ultralight, it was determined that a pressure gauge would be required to monitor the simulated flight loads. After analyzing several factors, which are indicated in the discussion section of this report, the Marsh J1678 pressure gauge appeared to be the prominent candidate for the task. However, prior to the final selection, the Marsh pressure gauge was calibrated twice by two different techniques. As a result of the calibration, the Marsh gauge was selected as the appropriate measuring device during the structural testing of the ultralight. Although, there are commerical pressure gauges available on the market that would have proven to be more efficient and accurate. However, in order to obtain these characteristics in a gauge, one has to pay the price on the price tag, and this value is an exponential function of the degree of accuracy efficiency, precision, and many other features that may be designed into the gauge. After analyzing the extent of precision and accuracy that would be required, a more expensive gauge wouldn't have proven to be a financial benefit towards the outcome of the experiment
    • …
    corecore