278 research outputs found

    Probabilistic Models over Ordered Partitions with Application in Learning to Rank

    Get PDF
    This paper addresses the general problem of modelling and learning rank data with ties. We propose a probabilistic generative model, that models the process as permutations over partitions. This results in super-exponential combinatorial state space with unknown numbers of partitions and unknown ordering among them. We approach the problem from the discrete choice theory, where subsets are chosen in a stagewise manner, reducing the state space per each stage significantly. Further, we show that with suitable parameterisation, we can still learn the models in linear time. We evaluate the proposed models on the problem of learning to rank with the data from the recently held Yahoo! challenge, and demonstrate that the models are competitive against well-known rivals.Comment: 19 pages, 2 figure

    Fast and Robust Rank Aggregation against Model Misspecification

    Full text link
    In rank aggregation, preferences from different users are summarized into a total order under the homogeneous data assumption. Thus, model misspecification arises and rank aggregation methods take some noise models into account. However, they all rely on certain noise model assumptions and cannot handle agnostic noises in the real world. In this paper, we propose CoarsenRank, which rectifies the underlying data distribution directly and aligns it to the homogeneous data assumption without involving any noise model. To this end, we define a neighborhood of the data distribution over which Bayesian inference of CoarsenRank is performed, and therefore the resultant posterior enjoys robustness against model misspecification. Further, we derive a tractable closed-form solution for CoarsenRank making it computationally efficient. Experiments on real-world datasets show that CoarsenRank is fast and robust, achieving consistent improvement over baseline methods
    • …
    corecore