4,718 research outputs found

    Planar Drawings of Fixed-Mobile Bigraphs

    Full text link
    A fixed-mobile bigraph G is a bipartite graph such that the vertices of one partition set are given with fixed positions in the plane and the mobile vertices of the other part, together with the edges, must be added to the drawing. We assume that G is planar and study the problem of finding, for a given k >= 0, a planar poly-line drawing of G with at most k bends per edge. In the most general case, we show NP-hardness. For k=0 and under additional constraints on the positions of the fixed or mobile vertices, we either prove that the problem is polynomial-time solvable or prove that it belongs to NP. Finally, we present a polynomial-time testing algorithm for a certain type of "layered" 1-bend drawings

    An analogue of Ryser's Theorem for partial Sudoku squares

    Full text link
    In 1956 Ryser gave a necessary and sufficient condition for a partial latin rectangle to be completable to a latin square. In 1990 Hilton and Johnson showed that Ryser's condition could be reformulated in terms of Hall's Condition for partial latin squares. Thus Ryser's Theorem can be interpreted as saying that any partial latin rectangle RR can be completed if and only if RR satisfies Hall's Condition for partial latin squares. We define Hall's Condition for partial Sudoku squares and show that Hall's Condition for partial Sudoku squares gives a criterion for the completion of partial Sudoku rectangles that is both necessary and sufficient. In the particular case where n=pqn=pq, prp|r, qsq|s, the result is especially simple, as we show that any r×sr \times s partial (p,q)(p,q)-Sudoku rectangle can be completed (no further condition being necessary).Comment: 19 pages, 10 figure

    Grid-Obstacle Representations with Connections to Staircase Guarding

    Full text link
    In this paper, we study grid-obstacle representations of graphs where we assign grid-points to vertices and define obstacles such that an edge exists if and only if an xyxy-monotone grid path connects the two endpoints without hitting an obstacle or another vertex. It was previously argued that all planar graphs have a grid-obstacle representation in 2D, and all graphs have a grid-obstacle representation in 3D. In this paper, we show that such constructions are possible with significantly smaller grid-size than previously achieved. Then we study the variant where vertices are not blocking, and show that then grid-obstacle representations exist for bipartite graphs. The latter has applications in so-called staircase guarding of orthogonal polygons; using our grid-obstacle representations, we show that staircase guarding is \textsc{NP}-hard in 2D.Comment: To appear in the proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    On the Fiedler value of large planar graphs

    Get PDF
    The Fiedler value λ2\lambda_2, also known as algebraic connectivity, is the second smallest Laplacian eigenvalue of a graph. We study the maximum Fiedler value among all planar graphs GG with nn vertices, denoted by λ2max\lambda_{2\max}, and we show the bounds 2+Θ(1n2)λ2max2+O(1n)2+\Theta(\frac{1}{n^2}) \leq \lambda_{2\max} \leq 2+O(\frac{1}{n}). We also provide bounds on the maximum Fiedler value for the following classes of planar graphs: Bipartite planar graphs, bipartite planar graphs with minimum vertex degree~3, and outerplanar graphs. Furthermore, we derive almost tight bounds on λ2max\lambda_{2\max} for two more classes of graphs, those of bounded genus and KhK_h-minor-free graphs.Comment: 21 pages, 4 figures, 1 table. Version accepted in Linear Algebra and Its Application

    Binary Determinantal Complexity

    Full text link
    We prove that for writing the 3 by 3 permanent polynomial as a determinant of a matrix consisting only of zeros, ones, and variables as entries, a 7 by 7 matrix is required. Our proof is computer based and uses the enumeration of bipartite graphs. Furthermore, we analyze sequences of polynomials that are determinants of polynomially sized matrices consisting only of zeros, ones, and variables. We show that these are exactly the sequences in the complexity class of constant free polynomially sized (weakly) skew circuits.Comment: 10 pages, C source code for the computation available as ancillary file

    Obstacle Numbers of Planar Graphs

    Full text link
    Given finitely many connected polygonal obstacles O1,,OkO_1,\dots,O_k in the plane and a set PP of points in general position and not in any obstacle, the {\em visibility graph} of PP with obstacles O1,,OkO_1,\dots,O_k is the (geometric) graph with vertex set PP, where two vertices are adjacent if the straight line segment joining them intersects no obstacle. The obstacle number of a graph GG is the smallest integer kk such that GG is the visibility graph of a set of points with kk obstacles. If GG is planar, we define the planar obstacle number of GG by further requiring that the visibility graph has no crossing edges (hence that it is a planar geometric drawing of GG). In this paper, we prove that the maximum planar obstacle number of a planar graph of order nn is n3n-3, the maximum being attained (in particular) by maximal bipartite planar graphs. This displays a significant difference with the standard obstacle number, as we prove that the obstacle number of every bipartite planar graph (and more generally in the class PURE-2-DIR of intersection graphs of straight line segments in two directions) of order at least 33 is 11.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Matchings in Random Biregular Bipartite Graphs

    Get PDF
    We study the existence of perfect matchings in suitably chosen induced subgraphs of random biregular bipartite graphs. We prove a result similar to a classical theorem of Erdos and Renyi about perfect matchings in random bipartite graphs. We also present an application to commutative graphs, a class of graphs that are featured in additive number theory.Comment: 30 pages and 3 figures - Latest version has updated introduction and bibliograph
    corecore