765 research outputs found

    OPTIMAL AREA AND PERFORMANCE MAPPING OF K-LUT BASED FPGAS

    Get PDF
    FPGA circuits are increasingly used in many fields: for rapid prototyping of new products (including fast ASIC implementation), for logic emulation, for producing a small number of a device, or if a device should be reconfigurable in use (reconfigurable computing). Determining if an arbitrary, given wide, function can be implemented by a programmable logic block, unfortunately, it is generally, a very difficult problem. This problem is called the Boolean matching problem. This paper introduces a new implemented algorithm able to map, both for area and performance, combinational networks using k-LUT based FPGAs.k-LUT based FPGAs, combinational circuits, performance-driven mapping.

    Optimizing Scrubbing by Netlist Analysis for FPGA Configuration Bit Classification and Floorplanning

    Full text link
    Existing scrubbing techniques for SEU mitigation on FPGAs do not guarantee an error-free operation after SEU recovering if the affected configuration bits do belong to feedback loops of the implemented circuits. In this paper, we a) provide a netlist-based circuit analysis technique to distinguish so-called critical configuration bits from essential bits in order to identify configuration bits which will need also state-restoring actions after a recovered SEU and which not. Furthermore, b) an alternative classification approach using fault injection is developed in order to compare both classification techniques. Moreover, c) we will propose a floorplanning approach for reducing the effective number of scrubbed frames and d), experimental results will give evidence that our optimization methodology not only allows to detect errors earlier but also to minimize the Mean-Time-To-Repair (MTTR) of a circuit considerably. In particular, we show that by using our approach, the MTTR for datapath-intensive circuits can be reduced by up to 48.5% in comparison to standard approaches

    OPTIMIZING LARGE COMBINATIONAL NETWORKS FOR K-LUT BASED FPGA MAPPING

    Get PDF
    Optimizing by partitioning is a central problem in VLSI design automation, addressing circuit’s manufacturability. Circuit partitioning has multiple applications in VLSI design. One of the most common is that of dividing combinational circuits (usually large ones) that will not fit on a single package among a number of packages. Partitioning is of practical importance for k-LUT based FPGA circuit implementation. In this work is presented multilevel a multi-resource partitioning algorithm for partitioning large combinational circuits in order to efficiently use existing and commercially available FPGAs packagestwo-way partitioning, multi-way partitioning, recursive partitioning, flat partitioning, critical path, cutting cones, bottom-up clusters, top-down min-cut

    A fully parameterized virtual coarse grained reconfigurable array for high performance computing applications

    Get PDF
    Field Programmable Gate Arrays (FPGAs) have proven their potential in accelerating High Performance Computing (HPC) Applications. Conventionally such accelerators predominantly use, FPGAs that contain fine-grained elements such as LookUp Tables (LUTs), Switch Blocks (SB) and Connection Blocks (CB) as basic programmable logic blocks. However, the conventional implementation suffers from high reconfiguration and development costs. In order to solve this problem, programmable logic components are defined at a virtual higher abstraction level. These components are called Processing Elements (PEs) and the group of PEs along with the inter-connection network form an architecture called a Virtual Coarse-Grained Reconfigurable Array (VCGRA). The abstraction helps to reconfigure the PEs faster at the intermediate level than at the lower-level of an FPGA. Conventional VCGRA implementations (built on top of the lower levels of the FPGA) use functional resources such as LUTs to establish required connections (intra-connect) within a PE. In this paper, we propose to use the parameterized reconfiguration technique to implement the intra-connections of each PE with the aim to reduce the FPGA resource utilization (LUTs). The technique is used to parameterize the intra-connections with parameters that only change their value infrequently (whenever a new VCGRA function has to be reconfigured) and that are implemented as constants. Since the design is optimized for these constants at every moment in time, this reduces the resource utilization. Further, interconnections (network between the multiple PEs) of the VCGRA grid can also be parameterized so that both the inter- and intraconnect network of the VCGRA grid can be mapped onto the physical switch blocks of the FPGA. For every change in parameter values a specialized bitstream is generated on the fly and the FPGA is reconfigured using the parameterized run-time reconfiguration technique. Our results show a drastic reduction in FPGA LUT resource utilization in the PE by at least 30% and in the intra-network of the PE by 31% when implementing an HPC application

    Empowering parallel computing with field programmable gate arrays

    Get PDF
    After more than 30 years, reconfigurable computing has grown from a concept to a mature field of science and technology. The cornerstone of this evolution is the field programmable gate array, a building block enabling the configuration of a custom hardware architecture. The departure from static von Neumannlike architectures opens the way to eliminate the instruction overhead and to optimize the execution speed and power consumption. FPGAs now live in a growing ecosystem of development tools, enabling software programmers to map algorithms directly onto hardware. Applications abound in many directions, including data centers, IoT, AI, image processing and space exploration. The increasing success of FPGAs is largely due to an improved toolchain with solid high-level synthesis support as well as a better integration with processor and memory systems. On the other hand, long compile times and complex design exploration remain areas for improvement. In this paper we address the evolution of FPGAs towards advanced multi-functional accelerators, discuss different programming models and their HLS language implementations, as well as high-performance tuning of FPGAs integrated into a heterogeneous platform. We pinpoint fallacies and pitfalls, and identify opportunities for language enhancements and architectural refinements

    The IPS fidelity scale as a guideline to implement Supported Employment

    No full text
    info:eu-repo/semantics/publishe

    New FPGA design tools and architectures

    Get PDF

    Compiling dataflow graphs into hardware

    Get PDF
    Department Head: L. Darrell Whitley.2005 Fall.Includes bibliographical references (pages 121-126).Conventional computers are programmed by supplying a sequence of instructions that perform the desired task. A reconfigurable processor is "programmed" by specifying the interconnections between hardware components, thereby creating a "hardwired" system to do the particular task. For some applications such as image processing, reconfigurable processors can produce dramatic execution speedups. However, programming a reconfigurable processor is essentially a hardware design discipline, making programming difficult for application programmers who are only familiar with software design techniques. To bridge this gap, a programming language, called SA-C (Single Assignment C, pronounced "sassy"), has been designed for programming reconfigurable processors. The process involves two main steps - first, the SA-C compiler analyzes the input source code and produces a hardware-independent intermediate representation of the program, called a dataflow graph (DFG). Secondly, this DFG is combined with hardware-specific information to create the final configuration. This dissertation describes the design and implementation of a system that performs the DFG to hardware translation. The DFG is broken up into three sections: the data generators, the inner loop body, and the data collectors. The second of these, the inner loop body, is used to create a computational structure that is unique for each program. The other two sections are implemented by using prebuilt modules, parameterized for the particular problem. Finally, a "glue module" is created to connect the various pieces into a complete interconnection specification. The dissertation also explores optimizations that can be applied while processing the DFG, to improve performance. A technique for pipelining the inner loop body is described that uses an estimation tool for the propagation delay of the nodes within the dataflow graph. A scheme is also described that identifies subgraphs with the dataflow graph that can be replaced with lookup tables. The lookup tables provide a faster implementation than random logic in some instances

    Intelligent optimization of Circuit placement on FPGA

    Get PDF
    Field programmable gate arrays (FPGAs) have revolutionized the way digital systems are designed and built over the past decade. With architectures capable of holding tens of millions of logic gates on the horizon and planned integration of configurable logic into system-on-chip platforms, the versatility of programmable devices expected to increase dramatically. Placement is one of the vital steps in mapping a design into FPGA in order to take best advantage of the resources and flexibility provided by it. Here, we propose to test techniques of Placement Optimization on MCNC Benchmark circuits. PSO (Particle Swarm Optimization) has been implemented on circuit netlist with bounding box as cost function. Alternate cost functions were also employed to verify efficiency of optimization. Furthermore, lazy descent was introduced into the algorithm to impede premature convergence. Different values of acceleration and weighing factors were used in the implementation and corresponding convergence results were analyzed. Keywords- FPGA Placement; Particle Swarm Optimization; MCNC Benchmarks Circuits; Bounding Box driven Placement
    corecore