379 research outputs found

    Architecture and sparse placement of limited-wavelength converters for optical networks

    Get PDF
    Equipping all nodes of a large optical network with full conversion capability is prohibitively costly. To improve performance at reduced cost, sparse converter placement algorithms are used to select a subset of nodes for full-conversion deployment. Further cost reduction can be obtained by deploying only limited conversion capability in the selected nodes. We present a limited wavelength converter placement algorithm based on the k-minimum dominating set (k-MDS) concept. We propose three different cost-effective optical switch designs using the technologically feasible nontunable optical multiplexers. These three switch designs are flexible node sharing, strict node sharing, and static mapping. Compared to the full search heuristic of O(N-3) complexity based on ranking nodes by blocking percentages, our algorithm not only has a better time complexity O(RN2), where R is the number of disjoint sets provided by k-MIDS, but also avoids the local minimum problem. The performance benefit of our algorithm is demonstrated by network simulation with the U.S Long Haul topology having 28 nodes (91 is 5) and the National Science Foundation (NSF) network having 16 nodes (91 is 4). Our simulation considers the case when the traffic is not uniformly distributed between node pairs in the network using a weighted placement approach, referred to as k-WMDS. From the optical network management point of view, our results also show that the limited conversion capability can achieve performance very close to that of the full conversion capability, while not only decreasing the optical switch cost but also enhancing its fault tolerance

    A heuristic for placement of limited range wavelength converters in all-optical networks

    Get PDF
    Wavelength routed optical networks have emerged as a technology that can effectively utilize the enormous bandwidth of the optical fiber. Wavelength converters play an important role in enhancing the fiber utilization and reducing the overall call blocking probability of the network. As the distortion of the optical signal increases with the increase in the range of wavelength conversion in optical wavelength converters, limited range wavelength conversion assumes importance. Placement of wavelength converters is a NP complete problem [K.C. Lee, V.O.K. Li, IEEE J. Lightwave Technol. 11 (1993) 962-970] in an arbitrary mesh network. In this paper, we investigate heuristics for placing limited range wavelength converters in arbitrary mesh wavelength routed optical networks. The objective is to achieve near optimal placement of limited range wavelength converters resulting in reduced blocking probabilities and low distortion of the optical signal. The proposed heuristic is to place limited range wavelength converters at the most congested nodes, nodes which lie on the long lightpaths and nodes where conversion of optical signals is significantly high. We observe that limited range converters at few nodes can provide almost the entire improvement in the blocking probability as the full range wavelength converters placed at all the nodes. Congestion control in the network is brought about by dynamically adjusting the weights of the channels in the link thereby balancing the load and reducing the average delay of the traffic in the entire network. Simulations have been carried out on a 12-node ring network, 14-node NSFNET, 19-node European Optical Network (EON), 28-node US long haul network, hypothetical 30-node INET network and the results agree with the analysis. (C) 2001 Elsevier Science B.V, All rights reserved

    Optimization in Telecommunication Networks

    Get PDF
    Network design and network synthesis have been the classical optimization problems intelecommunication for a long time. In the recent past, there have been many technologicaldevelopments such as digitization of information, optical networks, internet, and wirelessnetworks. These developments have led to a series of new optimization problems. Thismanuscript gives an overview of the developments in solving both classical and moderntelecom optimization problems.We start with a short historical overview of the technological developments. Then,the classical (still actual) network design and synthesis problems are described with anemphasis on the latest developments on modelling and solving them. Classical results suchas Menger’s disjoint paths theorem, and Ford-Fulkerson’s max-flow-min-cut theorem, butalso Gomory-Hu trees and the Okamura-Seymour cut-condition, will be related to themodels described. Finally, we describe recent optimization problems such as routing andwavelength assignment, and grooming in optical networks.operations research and management science;

    Investigation of the tolerance of wavelength-routed optical networks to traffic load variations.

    Get PDF
    This thesis focuses on the performance of circuit-switched wavelength-routed optical network with unpredictable traffic pattern variations. This characteristic of optical networks is termed traffic forecast tolerance. First, the increasing volume and heterogeneous nature of data and voice traffic is discussed. The challenges in designing robust optical networks to handle unpredictable traffic statistics are described. Other work relating to the same research issues are discussed. A general methodology to quantify the traffic forecast tolerance of optical networks is presented. A traffic model is proposed to simulate dynamic, non-uniform loads, and used to test wavelength-routed optical networks considering numerous network topologies. The number of wavelengths required and the effect of the routing and wavelength allocation algorithm are investigated. A new method of quantifying the network tolerance is proposed, based on the calculation of the increase in the standard deviation of the blocking probabilities with increasing traffic load non-uniformity. The performance of different networks are calculated and compared. The relationship between physical features of the network topology and traffic forecast tolerance is investigated. A large number of randomly connected networks with different sizes were assessed. It is shown that the average lightpath length and the number of wavelengths required for full interconnection of the nodes in static operation both exhibit a strong correlation with the network tolerance, regardless of the degree of load non-uniformity. Finally, the impact of wavelength conversion on network tolerance is investigated. Wavelength conversion significantly increases the robustness of optical networks to unpredictable traffic variations. In particular, two sparse wavelength conversion schemes are compared and discussed: distributed wavelength conversion and localized wavelength conversion. It is found that the distributed wavelength conversion scheme outperforms localized wavelength conversion scheme, both with uniform loading and in terms of the network tolerance. The results described in this thesis can be used for the analysis and design of reliable WDM optical networks that are robust to future traffic demand variations

    Virtualisation and resource allocation in MECEnabled metro optical networks

    Get PDF
    The appearance of new network services and the ever-increasing network traffic and number of connected devices will push the evolution of current communication networks towards the Future Internet. In the area of optical networks, wavelength routed optical networks (WRONs) are evolving to elastic optical networks (EONs) in which, thanks to the use of OFDM or Nyquist WDM, it is possible to create super-channels with custom-size bandwidth. The basic element in these networks is the lightpath, i.e., all-optical circuits between two network nodes. The establishment of lightpaths requires the selection of the route that they will follow and the portion of the spectrum to be used in order to carry the requested traffic from the source to the destination node. That problem is known as the routing and spectrum assignment (RSA) problem, and new algorithms must be proposed to address this design problem. Some early studies on elastic optical networks studied gridless scenarios, in which a slice of spectrum of variable size is assigned to a request. However, the most common approach to the spectrum allocation is to divide the spectrum into slots of fixed width and allocate multiple, consecutive spectrum slots to each lightpath, depending on the requested bandwidth. Moreover, EONs also allow the proposal of more flexible routing and spectrum assignment techniques, like the split-spectrum approach in which the request is divided into multiple "sub-lightpaths". In this thesis, four RSA algorithms are proposed combining two different levels of flexibility with the well-known k-shortest paths and first fit heuristics. After comparing the performance of those methods, a novel spectrum assignment technique, Best Gap, is proposed to overcome the inefficiencies emerged when combining the first fit heuristic with highly flexible networks. A simulation study is presented to demonstrate that, thanks to the use of Best Gap, EONs can exploit the network flexibility and reduce the blocking ratio. On the other hand, operators must face profound architectural changes to increase the adaptability and flexibility of networks and ease their management. Thanks to the use of network function virtualisation (NFV), the necessary network functions that must be applied to offer a service can be deployed as virtual appliances hosted by commodity servers, which can be located in data centres, network nodes or even end-user premises. The appearance of new computation and networking paradigms, like multi-access edge computing (MEC), may facilitate the adaptation of communication networks to the new demands. Furthermore, the use of MEC technology will enable the possibility of installing those virtual network functions (VNFs) not only at data centres (DCs) and central offices (COs), traditional hosts of VFNs, but also at the edge nodes of the network. Since data processing is performed closer to the enduser, the latency associated to each service connection request can be reduced. MEC nodes will be usually connected between them and with the DCs and COs by optical networks. In such a scenario, deploying a network service requires completing two phases: the VNF-placement, i.e., deciding the number and location of VNFs, and the VNF-chaining, i.e., connecting the VNFs that the traffic associated to a service must transverse in order to establish the connection. In the chaining process, not only the existence of VNFs with available processing capacity, but the availability of network resources must be taken into account to avoid the rejection of the connection request. Taking into consideration that the backhaul of this scenario will be usually based on WRONs or EONs, it is necessary to design the virtual topology (i.e., the set of lightpaths established in the networks) in order to transport the tra c from one node to another. The process of designing the virtual topology includes deciding the number of connections or lightpaths, allocating them a route and spectral resources, and finally grooming the traffic into the created lightpaths. Lastly, a failure in the equipment of a node in an NFV environment can cause the disruption of the SCs traversing the node. This can cause the loss of huge amounts of data and affect thousands of end-users. In consequence, it is key to provide the network with faultmanagement techniques able to guarantee the resilience of the established connections when a node fails. For the mentioned reasons, it is necessary to design orchestration algorithms which solve the VNF-placement, chaining and network resource allocation problems in 5G networks with optical backhaul. Moreover, some versions of those algorithms must also implements protection techniques to guarantee the resilience system in case of failure. This thesis makes contribution in that line. Firstly, a genetic algorithm is proposed to solve the VNF-placement and VNF-chaining problems in a 5G network with optical backhaul based on star topology: GASM (genetic algorithm for effective service mapping). Then, we propose a modification of that algorithm in order to be applied to dynamic scenarios in which the reconfiguration of the planning is allowed. Furthermore, we enhanced the modified algorithm to include a learning step, with the objective of improving the performance of the algorithm. In this thesis, we also propose an algorithm to solve not only the VNF-placement and VNF-chaining problems but also the design of the virtual topology, considering that a WRON is deployed as the backhaul network connecting MEC nodes and CO. Moreover, a version including individual VNF protection against node failure has been also proposed and the effect of using shared/dedicated and end-to-end SC/individual VNF protection schemes are also analysed. Finally, a new algorithm that solves the VNF-placement and chaining problems and the virtual topology design implementing a new chaining technique is also proposed. Its corresponding versions implementing individual VNF protection are also presented. Furthermore, since the method works with any type of WDM mesh topologies, a technoeconomic study is presented to compare the effect of using different network topologies in both the network performance and cost.Departamento de TeorĂ­a de la SeĂąal y Comunicaciones e IngenierĂ­a TelemĂĄticaDoctorado en TecnologĂ­as de la InformaciĂłn y las Telecomunicacione
    • …
    corecore