197 research outputs found

    MR4RF: MEM-device with impedance and their usage with impedance matching networks for passive RFID tags in the UHF

    Get PDF
    The passive RFID tag in the UHF has been employed in several different applications including, tracking, logistics, and as a sensing platform for the Internet of things (IoT). The tag is ideal for this industry due to its unique design. It harvests all of its energy from the environment, and is small, cheap, and requires little to no maintenance. However, there are two major issues limiting the potential of the passive RFID systems: the limited power harvested by the tag, and the high susceptibility to interference and coupling. In particular, dynamic environments render the traditionally fixed, RF impedance matching network ineffective. A novel design for a flexible Impedance-Switching Network (ISN) for passive RFID tags in the UHF is presented in this thesis. This novel approach can maximize power harvested by the tag. We propose two approaches to implementing the ISN. First, a more traditional design with a series of varactors is developed and studied. Each varactor is placed in parallel impedance lanes that are controlled via a feedback loop to maximize harvested power. A four-lane ISN is designed, tested, and tuned. The simulations and experiments demonstrate that ISN is capable of compensating for negative effect of mutual coupling in a ferromagnetic-reach environment. The second design employs a new material called a memristive switch that can replace the varactors in the ISN. State of a memristive switch is non-volatile and requires little energy to operate, thus making it ideal for passive RFID tags. We are the first to characterize the Co3O4 based memristive switch in UHF range. The results show that it can be employed as a varying capacitor in the RF front-end design. We propose three general configurations for the ISNs --Abstract, page iii

    Wireless colorimetric readout to enable resource-limited point-of-care

    Get PDF
    Patientennahe Diagnostik in Entwicklungsländer birgt spezielle Herausforderungen, die ihren Erfolg bisher begrenzen. Diese Arbeit widmet sich daher der Entwicklung eines in seiner Herstellung skalierbaren und vielseitig einsetzbaren funkbasierten Auslesegerätes für Laborteststreifen. Durch die Kombination einer wachsenden Auswahl an papierbasierten Teststreifendiagnostiken mit gedruckter Elektronik und unter Berücksichtigung des diagnostischen Alltags im südlichen Afrika wurde ein Gerät entwickelt, das Teststreifen zuverlässig ausliest und die Daten per Funk an eine Datenbank übertragen kann. Die Technik basiert auf RFID-Tags (radio frequency identification devices), welche auf verschiedene flexible Substrate gedruckt wurden, um die technische Umsetzbarkeit und Funktionalität zu evaluieren. Um den Preis für die geplante Anwendung niedrig zu halten, wurden unter anderem Papier und Karton als Substrate genutzt. Das Ergebnis dieser Studie sind passive RFID-Tags auf unterschiedlichen, meist günstigen Substraten, die über eine Distanz von über 75 mm betrieben und ausgelesen werden können. Basierend auf der über RFID bereitgestellten Energie und Datenübertragung wurde eine Ausleseeinheit für Standardpapierstreifentests entwickelt und integriert. Durch das Auslesen verschiedener Teststreifen wurde das Gerät evaluiert und in seiner Aussagekraft mit einer scanner-basierten Aufnahme und anschließender Bildanalyse (ImageJ), einem kommerziellen Auslesegerät sowie einer manuellen Auslesung mit Hilfe von Farbtabellen verglichen. Das Gerät kann die Streifen zuverlässig auslesen und die Daten über die RFID-Schnittstelle übertragen. Die funkbasierte Ausleseeinheit ist mit verschiedenen kommerziellen Teststreifen sowohl im biodiagnostischen (lateral flow tests) wie auch im chemischen Bereich (pH-Wert) kompatibel. Die modulare Lösung erlaubt ein breites Einsatzgebiet und führt dadurch zu reduzierten Trainingszeiten der Anwender und einer zuverlässigen Handhabung. Die vorgestellte Lösung ist äußerst kostengünstig und bedarf keiner Wartung, wodurch sie sich sehr gut für den Einsatz in abgelegenen Feldkrankenhäusern eignet. Es wurde ein skalierbarer Prototyp entwickelt, der auf konventionellen Herstellungsverfahren der Verpackungsindustrie aufbaut. Aktuell handelt es sich noch um einen bogenbasierten Prozess, der sich aber prinzipiell auch auf Rolle-zu-Rolle Maschinen übertragen lässt. Bei der Entwicklung des Geräts spielte die Möglichkeit der lokalen Herstellung in den Einsatzländern eine große Rolle. Diese hätte neben der Generierung von Arbeitsplätzen auch den Vorteil einer einfacheren Verteilung der Geräte in ländliche Regionen, in denen sie den größten Nutzen für die Diagnostik erzielen würden

    Advanced Radio Frequency Identification Design and Applications

    Get PDF
    Radio Frequency Identification (RFID) is a modern wireless data transmission and reception technique for applications including automatic identification, asset tracking and security surveillance. This book focuses on the advances in RFID tag antenna and ASIC design, novel chipless RFID tag design, security protocol enhancements along with some novel applications of RFID

    Localisation and navigation in GPS-denied environments using RFID tags

    Get PDF
    Includes bibliographical references.This dissertation addresses the autonomous localisation and navigation problem in the context of an underground mining environment. This kind of environment has little or no features as well as no access to GPS or stationary towers, which are usually used for navigation. In addition dust and debris may hinder optical methods for ranging. This study looks at the feasibility of using randomly distributed RFID tags to autonomously navigate in this environment. Clustering of observed tags are used for localisation, subsequently value iteration is used to navigate to a defined goal. Results are presented, concluding that it is feasible to localise and navigate using only RFID tags, in simulation. Localisation feasibility is also confirmed by experimental measurements

    Development of a chipless RFID based aerospace structural health monitoring sensor system

    Get PDF
    Chipless Radio Frequency Identification (RFID) is modern wireless technology that has been earmarked as being suitable for low-cost item tagging/tracking. These devices do not require integrated circuitry or a battery and thus, are not only are cheap, but also easy to manufacture and potentially very robust. A great deal of attention is also being put on the possibility of giving these tags the ability to sense various environmental stimuli such as temperature and humidity. This work focusses on the potential use of chipless RFID as a sensor technology for aerospace Structural Health Monitoring. The project is focussed on the sensing of mechanical strain and temperature, with an emphasis placed on fabrication simplicity, so that the final sensor designs could be potentially fabricated in-situ using existing printing technologies. Within this project, a variety of novel chipless RFID strain and temperature sensors have been designed, fabricated and tested. A thorough discussion is also presented on the topic of strain sensor cross sensitivity, which places emphasis on issues like, transverse strain, dielectric constant variations and thermal swelling. Additionally, an exploration into other key technological challenges was also performed, with a focus on challenges such as: accurate and reliable stimulus detection, sensor polarization and multi-sensor support. Several key areas of future research have also been identified and outlined, with aims related to: Enhancing strain sensor fabrication simplicity, enhancing temperature sensor sensitivity and simplicity and developing a fully functional interrogation system

    Wireless Sensors and Actuators for Structural Health Monitoring of Fiber Composite Materials

    Get PDF
    This work evaluates and investigates the wireless generation and detection of Lamb-waves on fiber-reinforced materials using surface applied or embedded piezo elements. The general target is to achieve wireless systems or sensor networks for Structural Health Monitoring (SHM), a type of Non-Destructive-Evaluation (NDE). In this sense, a fully wireless measurement system that achieves power transmission implementing inductive coils is reported. This system allows a reduction of total system weight as well as better integration in the structure. A great concern is the characteristics of the material, in which the system is integrated, because the properties can have a direct impact on the strength of the magnetic field. Carbon-Fiber-Reinforced-Polymer (CFRP) is known to behave as an electrical conductor, shielding radio waves with increasing worse effects at higher frequencies. Due to the need of high power and voltage, interest is raised to evaluate the operation of piezo as actuators at the lower frequency ranges. To this end, actuating occurs at the International Scientific and Medical (ISM) band of 125 kHz or low-frequency (LF) range. The feasibility of such system is evaluated extensively in this work. Direct excitation, is done by combining the actuator bonded to the surface or embedded in the material with an inductive LF coil and setting the circuit in resonance. A more controlled possibility, also explored, is the use of electronics to generate a Hanning-windowed-sine to excite the PWAS in a narrow spectrum. In this case, only wireless power is transmitted to the actuator node, and this lastly implements a Piezo-driver to independently excite Lamb-waves. Sensing and data transfer, on the other hand, is done using the high-frequency (HF) 13.56 MHz. The HF range covers the requirements of faster sampling rate and lower energy content. A re-tuning of the antenna coils is performed to obtain better transmission qualities when the system is implemented in CFRP. Several quasi-isotropic (QI) CFRP plates with sensor and actuator nodes were made to measure the quality of transmission and the necessary energy to stimulate the actuator-sensor system. In order to produce baselines, measurements are prepared from a healthy plate under specific temperature and humidity conditions. The signals are evaluated to verify the functionality in the presence of defects. The measurements demonstrate that it is possible to wirelessly generate Lamb-waves while early results show the feasibility to determine the presence of structural failure. For instance, progress has been achieved detecting the presence of a failure in the form of drilled holes introduced to the structure. This work shows a complete set of experimental results of different sensor/-actuator nodes

    Applications of Additive Manufacturing Technologies to Ambient Energy Harvesters for Microwave and Millimeter-Wave Autonomous Wireless Sensing Networks and 3D Packaging Integration

    Get PDF
    The objectives of my researches are developing new RF and mm-wave energy harvester topologies and realizing them with new additive manufacturing fabrication processes. The proposed energy harvester topologies are utilized to achieve energy-autonomous wireless sensing networks for 5G communication and IoT solutions. The developed additive manufacturing fabrication process is adopted to realize not only energy harvesters but also mm-wave IC packaging process. Ambient energy harvesting techniques collect ambient energy such as solar, RF, heat, and vibration and convert them into DC power sources to support the energy requirement of electronics. Since the energy is provided autonomously and constantly, maintenance or replacement for the batteries inside wireless electronics is not necessary resulting in enormous cost reduction. The researches of energy harvester focus on three categories, new topologies to enhance the performances, increased harvested power levels, and applied energy harvester to find new killer applications. This work proposes new designs and improvements in all three categories. Various proof-of-concept backscattered sensing systems with integrated RF energy harvesters for 5G and IoT applications are demonstrated. In this research, high-efficiency and broadband rectifiers are proposed to support high-performance rectifications as well as increase harvested energy. New topologies to utilize both DC and harmonics are demonstrated to increase the reading range of on-body wireless sensing networks. Furthermore, energy-autonomous microfluidic sensing systems are demonstrated to unleash the potential of microfluidic applications. 5G energy harvester is proposed and integrated inside the multi-layered additive manufacturing IC packages to achieve fully-functional SiP modules. While determining the fabrication methods, low-cost, fast-prototyping, and scalable methods with great material and structural flexibilities are preferable, and thus, additive manufacturing technologies including inkjet printing, 3D printing, and glass semi-additive patterning process are adopted. This research utilizes inkjet-printed masks, substrates, and metal traces to simplify the conventional fabrication process. The new low-loss inkjet-printable ink is developed to push the additive manufacturing technologies to mm-wave ranges. The flexible 3D-printed materials are characterized and used for wearable sensor designs, microfluidic channels, and flexible packaging topologies. The 3D features are included inside the IC packages to achieve high-performance multi-layer packaging structures with shorter lengths, lower loss, and smaller parasitics. The high-precision glass semi-additive patterning process is used to realized AiP and SiP designs with great performances. Furthermore, through combining inkjet and 3D printing, this work proposes a fast, cost-effective, scalable, and environmentally-friendly fabrication process for various high-performance and compact antenna designs, microwave/mm-wave components, microfluidic channels, RF energy harvesters, and SiP designs. In summary, this work utilizes additive manufacturing processes to realize various innovative topologies of energy harvesters to harvest more power and achieve higher rectification efficiency with smaller sizes. Additive manufacturing processes and energy harvesting techniques are also used to demonstrate new applications including the first on-body long-range sensing network, the first energy-autonomous long-range microfluidic sensing system, and the first fully-functional energy-autonomous 5G SiP module design. The proposed topologies are suitable for smart cities, smart skin, and IoT applications.Ph.D
    corecore