18 research outputs found

    A complete characterization of irreducible cyclic orbit codes and their Plücker embedding

    Get PDF
    Constant dimension codes are subsets of the finite Grassmann variety. The study of these codes is a central topic in random linear network coding theory. Orbit codes represent a subclass of constant dimension codes. They are defined as orbits of a subgroup of the general linear group on the Grassmannian. This paper gives a complete characterization of orbit codes that are generated by an irreducible cyclic group, i.e. a group having one generator that has no non-trivial invariant subspace. We show how some of the basic properties of these codes, the cardinality and the minimum distance, can be derived using the isomorphism of the vector space and the extension field. Furthermore, we investigate the Plücker embedding of these codes and show how the orbit structure is preserved in the embeddin

    Grassmannians of codes

    Get PDF
    Consider the point line-geometry Pt(n,k){\mathcal P}_t(n,k) having as points all the [n,k][n,k]-linear codes having minimum dual distance at least t+1t+1 and where two points XX and YY are collinear whenever XYX\cap Y is a [n,k1][n,k-1]-linear code having minimum dual distance at least t+1t+1. We are interested in the collinearity graph Λt(n,k)\Lambda_t(n,k) of Pt(n,k).{\mathcal P}_t(n,k). The graph Λt(n,k)\Lambda_t(n,k) is a subgraph of the Grassmann graph and also a subgraph of the graph Δt(n,k)\Delta_t(n,k) of the linear codes having minimum dual distance at least t+1t+1 introduced in~[M. Kwiatkowski, M. Pankov, On the distance between linear codes, Finite Fields Appl. 39 (2016), 251--263, doi:https://doi.org/10.1016/j.ffa.2016.02.004, arXiv:1506.00215]. We shall study the structure of Λt(n,k)\Lambda_t(n,k) in relation to that of Δt(n,k)\Delta_t(n,k) and we will characterize the set of its isolated vertices. We will then focus on Λ1(n,k)\Lambda_1(n,k) and Λ2(n,k)\Lambda_2(n,k) providing necessary and sufficient conditions for them to be connected

    On Generalized Galois Cyclic Orbit Flag Codes

    Get PDF
    Flag codes that are orbits of a cyclic subgroup of the general linear group acting on flags of a vector space over a finite field, are called cyclic orbit flag codes. In this paper, we present a new contribution to the study of such codes, by focusing this time on the generating flag. More precisely, we examine those ones whose generating flag has at least one subfield among its subspaces. In this situation, two important families arise: the already known Galois flag codes, in case we have just fields, or the generalized Galois flag codes in other case. We investigate the parameters and properties of the latter ones and explore the relationship with their underlying Galois flag code.This research was funded by Ministerio de Ciencia e Innovación (grant number PID2019-108668GB-I00) and Generalitat Valenciana y Fondo Social Europeo (Grant number ACIF/2018/196)

    Signed permutohedra, delta-matroids, and beyond

    Full text link
    We establish a connection between the algebraic geometry of the type B permutohedral toric variety and the combinatorics of delta-matroids. Using this connection, we compute the volume and lattice point counts of type B generalized permutohedra. Applying tropical Hodge theory to a new framework of "tautological classes of delta-matroids," modeled after certain vector bundles associated to realizable delta-matroids, we establish the log-concavity of a Tutte-like invariant for a broad family of delta-matroids that includes all realizable delta-matroids. Our results include new log-concavity statements for all (ordinary) matroids as special cases

    An algebraic approach to graph codes

    Get PDF

    On 4-Dimensional Point Groups and on Realization Spaces of Polytopes

    Get PDF
    This dissertation consists of two parts. We highlight the main results from each part. Part I. 4-Dimensional Point Groups. (based on a joint work with Günter Rote.) We propose the following classification for the finite groups of orthogonal transformations in 4-space, the so-called 4-dimensional point groups. Theorem A. The 4-dimensional point groups can be classified into * 25 polyhedral groups (Table 5.1), * 21 axial groups (7 pyramidal groups, 7 prismatic groups, and 7 hybrid groups, Table 6.3), * 22 one-parameter families of tubical groups (11 left tubical groups and 11 right tubical groups, Table 3.1), and * 25 infinite families of toroidal groups (2 three-parameter families, 19 two-parameter families, and 4 one-parameter families, Table 4.3.) In contrast to earlier classifications of these groups (notably by Du Val in 1962 and by Conway and Smith in 2003), see Section 1.7), we emphasize a geometric viewpoint, trying to visualize and understand actions of these groups. Besides, we correct some omissions, duplications, and mistakes in these classifications. The 25 polyhedral groups (Chapter 5) are related to the regular polytopes. The symmetries of the regular polytopes are well understood, because they are generated by reflections, and the classification of such groups as Coxeter groups is classic. We will deal with these groups only briefly, dwelling a little on just a few groups that come in enantiomorphic pairs (i.e., groups that are not equal to their own mirror.) The 21 axial groups (Chapter 6) are those that keep one axis fixed. Thus, they essentially operate in the three dimensions perpendicular to this axis (possibly combined with a flip of the axis), and they are easy to handle, based on the well-known classification of the three-dimensional point groups. The tubical groups (Chapter 3) are characterized as those that have (exactly) one Hopf bundle invariant. They come in left and right versions (which are mirrors of each other) depending on the Hopf bundle they keep invariant. They are so named because they arise with a decomposition of the 3-sphere into tube-like structures (discrete Hopf fibrations). The toroidal groups (Chapter 4) are characterized as having an invariant torus. This class of groups is where our main contribution in terms of the completeness of the classification lies. We propose a new, geometric, classification of these groups. Essentially, it boils down to classifying the isometry groups of the two-dimensional square flat torus. We emphasize that, regarding the completeness of the classification, in particular concerning the polyhedral and tubical groups, we rely on the classic approach (see Section 1.6). Only for the toroidal and axial groups, we supplant the classic approach by our geometric approach. We give a self-contained presentation of Hopf fibrations (Chapter 2). In many places in the literature, one particular Hopf map is introduced as “the Hopf map”, either in terms of four real coordinates or two complex coordinates, leading to “the Hopf fibration”. In some sense, this is justified, as all Hopf bundles are (mirror-)congruent. However, for our characterization, we require the full generality of Hopf bundles. As a tool for working with Hopf fibrations, we introduce a parameterization for great circles in S^3 , which might be useful elsewhere. Our main tool to understand tubical groups are polar orbit polytopes. (Chapter 1). In particular, we study the symmetries of a cell of the polar orbit polytope for different starting points. Part II. Realization Spaces of Polytopes (based on a joint work with Rainer Sinn and Günter M. Ziegler.) Robertson in 1988 suggested a model for the realization space of a d-dimensional polytope P, and an approach via the implicit function theorem to prove that the realization space is a smooth manifold of dimension NG(P) := d(f_0 + f_{d−1} ) - f{0,d-1} . We call NG(P) the natural guess for (the dimension of the realization space of) P. We build on Robertson's model and approach to study the realization spaces of higher-dimensional polytopes. We conclude combinatorial criteria (Sections 9.3.3 and 9.4.1) to decide if the realization space of the polytope in consideration is a smooth manifold of dimension given by the natural guess. As another application, we study the realization spaces of the second hypersimplices (Section 9.4.2). We apply these criteria on 4-polytopes with small number of vertices, and along the way, we analyze examples where Robertson’s approach fails, identifying the three smallest examples of 4-polytopes, for which the realization space is still a smooth manifold, but its dimension is not given by the natural guess (Section 9.5). Finally, we investigate the realization space of the 24-cell (Section 9.5.2). We construct families of realizations of the 24-cell, and using them we show that the realization space of the 24-cell has points where it is not a smooth manifold. This provides the first known example of a polytope whose realization space is not a smooth manifold. We conclude by showing that the dimension of the realization space of the 24-cell is at least 48 and at most 52.Diese Dissertation befasst sich mit zwei verschiedenen Themen, von denen jedes seinen eigenen Teil hat. Der erste Teil befasst sich mit 4-dimensionalen Punktgruppen. Wir schlagen eine neue Klassifizierung für diese Gruppen vor (siehe Theorem A), die im Gegensatz zu früheren Klassifizierungen eine geometrische Sichtweise betont und versucht, die Aktionen dieser Gruppen zu visualisieren und zu verstehen. Im Folgenden werden diese Gruppen kurz beschrieben. Die polyedrischen Gruppen (Kapitel 5) sind mit den regelmäßigen Polytopen verwandt. Die axialen Gruppen (Kapitel 6) sind diejenigen, die eine Achse festhalten. Die schlauchartigen Gruppen (Kapitel 3) werden als solche charakterisiert, die genau eine invariantes Hopf-Bündel haben. Sie entstehen bei einer Zerlegung der 3-Sphäre in schlauchartige Strukturen (diskrete Hopf-Faserungen). Die toroidalen Gruppen (Kapitel 4) sind dadurch gekennzeichnet, dass sie einen invarianten Torus haben. Wir schlagen eine neue, geometrische Klassifizierung dieser Gruppen vor. Im Wesentlichen läuft sie darauf hinaus, die Isometriegruppen des zweidimensionalen quadratischen flachen Torus zu klassifizieren. Nebenbei geben wir eine in sich geschlossene Darstellung der Hopf-Faserungen (Kapitel 2). Als Hilfsmittel für die Arbeit mit ihnen führen wir eine Parametrisierung für Großkreise in S 3 ein, die an anderer Stelle nützlich sein könnte. Der zweite Teil befasst sich mit Realisierungsräumen von Polytopen. Wir bauen auf Robertsons Modell und Ansatz auf, um die Realisierungsräume von Polytopen zu untersuchen. Wir stellen kombinatorische Kriterien auf (Abschnitte 9.3.3 und 9.4.1), um zu entscheiden, ob der Realisierungsraum des betrachteten Polytops eine glatte Mannigfaltigkeit der durch die “natürliche Vermutung” gegebenen Dimension ist. Als weitere Anwendung, untersuchen wir die Realisierungsräume der zweiten Hypersimplices (Abschnitt 9.4.2). Nebenbei identifizieren wir die kleinsten Beispiele von 4-Polytopen, für die dieser Ansatz versagt (Abschnitt 9.5). Schließlich untersuchen wir den Realisierungsraum der 24-Zelle (Abschnitt 9.5.2). Wir zeigen, dass es Punkte gibt, an denen sie keine glatte Mannigfaltigkeit ist. Zuletzt zeigen wir, dass seine Dimension mindestens 48 und höchstens 52 beträgt

    Étude de la sécurité de certaines clés compactes pour le schéma de McEliece utilisant des codes géométriques

    Get PDF
    In 1978, McEliece introduce a new public key encryption scheme coming from errors correcting codes theory. The idea is to use an error correcting code whose structure would be hidden, making it impossible to decode a message for anyone who do not know a specific decoding algorithm for the chosen code.The McEliece scheme has some advantages, encryption and decryption are very fast and it is a good candidate for public-key cryptography in the context of quantum computer. The main constraint is that the public key is too large compared to other actual public-key cryptosystems. In this context, we propose to study the using of some quasi-cyclic or quasi-dyadic codes.In this thesis, the two families of interest are: the family of alternant codes and the family of subfield subcode of algebraic geometry codes. We can constructquasi-cyclic alternant codes using an automorphism which acts on the support and the multiplier of the code. In order to estimate the securtiy of these QC codes we study the {\em invariant code}. This invariant code is a smaller code derived from the public key. Actually the invariant code is exactly the subcode of codewords fixed by the automorphism σ\sigma. We show that it is possible to reduce the key-recovery problem on the original quasi-cyclic code to the same problem on the invariant code. This is also true in the case of QC algebraic geometry codes. This result permits us to propose a security analysis of QC codes coming from the Hermitian curve. Moreover, we propose compact key for the McEliece scheme using subfield subcode of AG codes on the Hermitian curve.The case of quasi-dyadic alternant code is also studied. Using the invariant code, with the {\em Schur product} and the {\em conductor} of two codes, we show weaknesses on the scheme using QD alternant codes with extension degree 2. In the case of the submission DAGS, proposed in the context of NIST competition, an attack exploiting these weakness permits to recover the secret key in few minutes for some proposed parameters.En 1978, McEliece introduit un schéma de chiffrement à clé publique issu de la théorie des codes correcteurs d’erreurs. L’idée du schéma de McEliece est d’utiliser un code correcteur dont la structure est masquée, rendant le décodage de ce code difficile pour toute personne ne connaissant pas cette structure. Le principal défaut de ce schéma est la taille de la clé publique. Dans ce contexte, on se propose d'étudier l'utilisation de codes dont on connaît une représentation compacte, en particulier le cas de codes quais-cyclique ou quasi-dyadique. Les deux familles de codes qui nous intéressent dans cette thèse sont: la famille des codes alternants et celle des sous--codes sur un sous--corps de codes géométriques. En faisant agir un automorphisme σ\sigma sur le support et le multiplier des codes alternants, on sait qu'il est possible de construire des codes alternants quasi-cycliques. On se propose alors d'estimer la sécurité de tels codes à l'aide du \textit{code invariant}. Ce sous--code du code public est constitué des mots du code strictement invariant par l'automorphisme σ\sigma. On montre ici que la sécurité des codes alternants quasi-cyclique se réduit à la sécurité du code invariant. Cela est aussi valable pour les sous--codes sur un sous--corps de codes géométriques quasi-cycliques. Ce résultat nous permet de proposer une analyse de la sécurité de codes quasi-cycliques construit sur la courbe Hermitienne. En utilisant cette analyse nous proposons des clés compactes pour la schéma de McEliece utilisant des sous-codes sur un sous-corps de codes géométriques construits sur la courbe Hermitienne. Le cas des codes alternants quasi-dyadiques est aussi en partie étudié. En utilisant le code invariant, ainsi que le \textit{produit de Schur} et le \textit{conducteur} de deux codes, nous avons pu mettre en évidence une attaque sur le schéma de McEliece utilisant des codes alternants quasi-dyadique de degré 22. Cette attaque s'applique notamment au schéma proposé dans la soumission DAGS, proposé dans le contexte de l'appel du NIST pour la cryptographie post-quantique

    Geometric Analysis of Nonlinear Partial Differential Equations

    Get PDF
    This book contains a collection of twelve papers that reflect the state of the art of nonlinear differential equations in modern geometrical theory. It comprises miscellaneous topics of the local and nonlocal geometry of differential equations and the applications of the corresponding methods in hydrodynamics, symplectic geometry, optimal investment theory, etc. The contents will be useful for all the readers whose professional interests are related to nonlinear PDEs and differential geometry, both in theoretical and applied aspects

    Geometrically uniform subspace codes and a proposal to construct quantum networks

    Get PDF
    Orientador: Reginaldo Palazzo JuniorTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Códigos de subespaço se mostram muito úteis contra a propagação de erros em uma rede linear multicast. Em particular, a família dos códigos de órbita apresenta uma estrutura algébrica bem definida o que, possivelmente, resultará na construção de bons algoritmos de decodificação e uma forma sistemática para o cálculo dos parâmetros do código. Neste trabalho, apresentamos um estudo dos códigos de órbita vistos como códigos geometricamente uniformes. A caracterização destas duas classes segue direto da definição de códigos de órbita e, dado um particionamento geometricamente uniforme destes códigos a partir de subgrupos normais do grupo gerador, propomos uma redução sobre o número de cálculos necessários para a obtenção das distâncias mínimas de um código de órbita abeliano e de um código L-nível, além de um algoritmo de decodificação baseado nas regiões de Voronoi. No último capítulo deste trabalho, propomos uma ideia de como projetar, do ponto de vista teórico, uma possível rede capaz de transmitir e operar informações quânticas. Tais informações são representadas por estados quânticos emaranhados, onde cada ket destes estados está associado a um subespaço vetorialAbstract: Subspace codes have been very useful to solve the error propagation in a multicast linear network. In particular, the orbit codes family presents a well-defined algebraic structure, which it will probably provide constructions of good decoding algorithms and a systematic way to compute the parameters of the code. In this work, we present a study of orbit codes seen as geometrically uniform codes. The characterization of both classes is direct from the definition of orbit codes and, given a uniform geometrically partition of these orbit codes from their normal subgroups of the generator group, we propose a reduction of the computation necessary for obtaining the minimum distances of an abelian orbit code and an L-level code, in addition to a decoding algorithm based on Voronoi regions. In the last chapter, we propose a hypothetical quantum network coding for the transmission of quantum information. This network consists of maximum entangled pure quantum states such that each ket of these states is associated with a vector subspaceDoutoradoTelecomunicações e TelemáticaDoutor em Engenharia Elétrica142094/2013-7CAPESCNP
    corecore