14 research outputs found

    An Approach to Semi-Autonomous Indoor Drone System: Software Architecture and Integration Testing

    Get PDF
    To address these problems, we establish a semi-autonomous functionality by removing the RC transmitter, and remotely connecting the Drone System to track status and executing user-based input commands. In order to resolve the limitation in hardware connections on the Flight Controller, we integrated the sonar sensor into a companion computer, from where the data is continuously fed to an embedded system through MAVLink (Micro Aerial Vehicle Link) network communication protocol. In this study, we also implemented a modular architecture which enables scalable integration of sensor modules into the Drone System to streamline the process of development, deployment, testing and debugging

    A Tutorial and Review on Flight Control Co-Simulation Using Matlab/Simulink and Flight Simulators

    Get PDF
    Flight testing in a realistic three-dimensional virtual environment is increasingly being considered a safe and cost-effective way of evaluating aircraft models and their control systems. The paper starts by reviewing and comparing the most popular personal computer-based flight simulators that have been successfully interfaced to date with the MathWorks software. This co-simulation approach allows combining the strengths of Matlab toolboxes for functions including navigation, control, and sensor modeling with the advanced simulation and scene rendering capabilities of dedicated flight simulation software. This approach can then be used to validate aircraft models, control algorithms, flight handling chatacteristics, or perform model identification from flight data. There is, however, a lack of sufficiently detailed step-by-step flight co-simulation tutorials, and there have also been few attempts to evaluate more than one flight co-simulation approach at a time. We, therefore, demonstrate our own step-by-step co-simulation implementations using Simulink with three different flight simulators: Xplane, FlightGear, and Alphalink’s virtual flight test environment (VFTE). All three co-simulations employ a real-time user datagram protocol (UDP) for data communication, and each approach has advantages depending on the aircraft type. In the case of a Cessna-172 general aviation aircraft, a Simulink co-simulation with Xplane demonstrates successful virtual flight tests with accurate simultaneous tracking of altitude and speed reference changes while maintaining roll stability under arbitrary wind conditions that present challenges in the single propeller Cessna. For a medium endurance Rascal-110 unmanned aerial vehicle (UAV), Simulink is interfaced with FlightGear and with QGroundControl using the MAVlink protocol, which allows to accurately follow the lateral UAV path on a map, and this setup is used to evaluate the validity of Matlab-based six degrees of freedom UAV models. For a smaller ZOHD Nano Talon miniature aerial vehicle (MAV), Simulink is interfaced with the VFTE, which was specifically designed for this MAV, and with QGroundControl for the testing of advanced H-infinity observer-based autopilots using a software-in-the-loop (SIL) simulation to achieve robust low altitude flight under windy conditions. This is then finally extended to hardware-in-the-loop (HIL) implementation on the Nano Talon MAV using a controller area network (CAN) databus and a Pixhawk-4 mini autopilot with simulated sensor models

    Design of unmanned aerial vehicle for insect aeroplankton collection

    Get PDF
    Ke studiu migrace hmyzu a jiných členovců unášených větrnými proudy je výhodné moci sbírat jejich vzorky za letu. Použití bezpilotního letadla s pastí by mohlo být dobrou cestou, jak toho dosáhnout. Tato metoda byla zkoumána a bylo navrženo bezpilotní letadlo v podobě bezocasého dvojploŠníku s pastí umístěnou mezi křídly.To study migration of insect and other arthropods in wind currents it is important to be able to collect their samples in flight. Use of unmanned aerial vehicle carrying a trap might be a good method. This possibility was studied and the aircraft was designed as a tailless biplane with trap placed between the wings.

    Emergency Landing Spot Detection for Unmanned Aerial Vehicle

    Get PDF
    The use and research of Unmanned Aerial Vehicle (UAV) have been increasing over the years due to the applicability in several operations such as search and rescue, delivery, surveillance and others. Considering the increased presence of these vehicles in the airspace, it becomes necessary to reflect on the safety issues or failures that UAV may have and what is the appropriate action to take. Furthermore, in many missions the vehicle will not return to its original location and, in case of fail to achieve the landing spot, need to have onboard capability to estimate the best spot to safely land. The vehicles are susceptible to external disturbance or electromechanical malfunction. In this emergency’s scenarios, UAVs must safely land in a way that will minimize damage to the robot and will not cause any human injury. The suitability of a landing site depends on two main factors: the distance of the aircraft to the landing site and the ground conditions. The ground conditions are all the factors that are relevant when the aircraft is in contact with the ground, such as slope, roughness and presence of obstacles. This dissertation addresses the scenario of finding a safe landing spot during operation. Therefore, the algorithm must be able to classify the incoming data and store the location of suitable areas. Specifically, by processing Light Detection and Ranging (LiDAR) data to identify potential landing zones and evaluating the detected spots continuously given certain conditions. In this dissertation, it was developed a method that analyses geometric features on point cloud data and detects potential good spots. The algorithm uses the Principal Component Analysis (PCA) to find planes in point clouds clusters. The planes that have slope less than a threshold are considered potential landing spots. These spots are then evaluated regarding ground and vehicles conditions such as the distance to the UAV, presence of obstacles, roughness of the area, slope of the spot. The output of the algorithm is the optimum spot to land and can vary during operation.O uso e pesquisa de veículos aéreos não tripulados (VANT) têm aumentado ao longo dos anos devido à aplicabilidade em diversas operações, como busca e salvamento, entrega, vigilância e outras. Considerando a crescente presença desses veículos no espaço aéreo, torna-se necessário refletir sobre os problemas ou falhas de segurança que o veículo pode ter e qual é a ação apropriada a ser tomada. Além disso, em muitas missões, o veículo não retornará ao seu local original e, caso não seja possível alcançar a zona de aterragem, precisa ter a capacidade de estimar o melhor ponto para aterrar em segurança. Os veículos são suscetíveis a perturbações externas ou mau funcionamento eletromecânico. Nesses cenários de emergência, os UAVs precisam aterrar com segurança de forma a minimizar os danos ao robô e não causar ferimentos em pessoas. A adequação de um local de pouso depende de dois fatores principais: a distância do veículo aéreo ao local de pouso e as condições do solo. As condições do solo são todos os fatores relevantes quando a aeronave está em contacto com o solo, como declividade, rugosidade e presença de obstáculos. Esta dissertação aborda o cenário de encontrar um local de pouso seguro durante a operação. Portanto, o algoritmo deve ser capaz de classificar os dados recebidos e armazenar a localização de áreas adequadas. Especificamente, processando dados de LiDAR para identificar possíveis zonas de aterragem e avaliando os pontos detetados continuamente, dadas determinadas condições. Nesta dissertação, foi desenvolvido um método que analisa características geométricas em nuvem de pontos e deteta possíveis bons locais de aterragem. O algoritmo usa a Análise de Componente Principal (PCA) para encontrar planos em clusters de nuvens de pontos. Os planos com inclinação menor que um limite são considerados possíveis pontos de aterragem. Esses pontos são então avaliados quanto às condições do solo e dos veículos, como a distância ao UAV, presença de obstáculos, rugosidade da área, inclinação do ponto. A saída do algoritmo é o local ideal para aterrar e pode variar durante a operação

    Sviluppo e implementazione di un sistema di controllo di assetto per velivoli ad ala fissa

    Get PDF
    L'elaborato svolto ha lo scopo di validare, tramite applicazione pratica, l’utilizzo di un autopilota come strumento di misura e di caratterizzazione delle prestazioni di un Unmanned Aerial Vehicle in scala. Sfruttando l’automazione del volo permessa dal software ArduPilot, versione ArduPlane, installato su un controllore di volo PixHawk 1 a bordo di un piccolo aereo elettrico a pilotaggio remoto propulso da elica ed alimentato da batteria Li-Po, vengono comandati dei voli in condizione di crociera a diverse velocità e, tramite l’analisi dei dati di volo, vengono stimate le autonomie orarie e chilometriche al variare della velocità rispetto all’aria

    Converting a Fixed-Wing UAV to a VTOL System: Structural Adaptation and Design of Autonomous Flight Control

    Get PDF
    En este documento se presenta las diferentes fases elaboradas para realizar la conversión e implementación de un sistema de despegue y aterrizaje vertical sobre una plataforma aérea no tripulada de ala fija, contemplando su análisis en elementos finitos, aerodinámica, modelo analítico, parámetros de control en el software Mission planner y finalmente su implementación mecánica y electrica.1 INTRODUCCIÓN 1.1 Estado del arte 1.2 Planteamiento del problema 1.3 Justificación 1.4 Delimitación 1.4.1 Delimitación conceptual 1.4.2 Delimitación cronológica 1.5 Objetivos 1.5.1 Objetivo general 1.5.2 Objetivos específicos 2 MARCO REFERENCIAL 2.1 Marco teórico 2.2 Marco legal 2.2.1 Clasificación de aeronaves 2.2.2 Legalidad 3 DESARROLLO 3.1 Fase aerodinámica 3.1.1 Configuración de malla 3.1.2 Condiciones de frontera 3.2 Modelo analítico 3.2.1 Movimiento horizontal 3.2.2 Movimiento vertical 3.3 Diseño mecanismo rotores basculantes 3.3.1 Diseño 1 3.3.2 Diseño 2 3.4 Análisis en elementos finitos 3.4.1 Análisis de fuerzas presentes en el cabezal 3.5 Software de control Mission Planner 3.5.1 Parámetros de control 3.5.2 Sistema de control de energía total (TECS) 3.5.3 Modos de vuelo implementados 3.5.4 Software in the loop (SITL) 3.6 Electrónica y sensores a implementar 3.7 Implementación mecánica 3.7.1 Elección de hélices 3.7.2 Inconvenientes encontrados 4 Análisis de resultados 5 Costos y enfoque financiero 6 Conclusiones y oportunidades de desarrollo futuro 7 Bibliografía y referenciasThis document presents the different phases developed to perform the conversion and implementation of a vertical take-off and landing system on an unmanned fixed-wing aerial platform, contemplating its analysis in finite elements, aerodynamics, analytical model, control parameters in the Mission planner software and finally its mechanical and electrical implementation.Pregrad

    Application of aircraft's flight testing techniques to the aerodynamic characterization of power kites

    Get PDF
    This thesis has developed an experimental methodology for the flight testing and data analysis of power kites applied to Airborne Wind Energy Systems (AWES). In particular, the Estimation Before Modeling technique, a well-known method in the aerospace industry for the aerodynamic characterization of an aircraft using real flight data, has been adapted for tethered aircraft. The developed methodology has two main building blocks: (i) an experimental setup to record experimental data during the flight testing, and (ii) a Flight Path Reconstruction algorithm to estimate the state of the system from the experimental data. From them, the aerodynamic characteristics of two types of kites were investigated. The proposed experimental setup was designed to be low cost, portable and easily adaptable to both, rigid and semi-rigid kites. It is composed of an instrumented kite representative of the ones used in AWES, an instrumented control bar, a ground computer and a wind station. Whenever it was possible, commercial off the shelf components have been used, including low cost openhardware sensors based on the PixHawk platform. However, after the first flight tests were conducted and the obtained results were discussed, high precision sensors were also included. The Flight Path Reconstruction (FPR) algorithm for tethered aircraft is based on an Extended Kalman Filter (EKF). In addition to the standard set of estimated state variables (ie. Euler angles, position or ground speed), the algorithm also provides the aerodynamic torque and forces upon the kite as well as the tether tensions and wind velocity vector. The EBM technique, and the FPR algorithm have been used to identify the aerodynamic characteristics of both, four-line Leading Edge Inflatable (LEI) kites and two-line Rigid Frame Delta (RFD) kites. Quantitative and qualitative results have been obtained. Albeit both types of kites exhibited very high AoA during the flight, some significant differences were found. In particular, the estimated lift coefficient of the LEI kite showed a behavior identified with a post-stall condition, while the RFD showed a pre-stall behavior with a lower AoA and a positive relation between the lift coefficient and the kite AoA. The presented experimental methodology can be of great interest for AWE industry as it helps to improve modeling of tethered aircraft, leading to more accurate performance figures which may increase investors interest in the technology. Moreover, flight testing methodologies and experimental data analysis are of great interest for benchmarking AWES performances, contributing to de-risk their development process and providing better tools for AWE "best concept" identification. Finally, as a sub-product of the presented methodology, the FPR algorithm can be used as a validated state estimator of the tethered aircraft, which is a key element of a closed loop flight control system.Programa de Doctorado en Mecánica de Fluidos por la Universidad Carlos III de Madrid; la Universidad de Jaén; la Universidad de Zaragoza; la Universidad Nacional de Educación a Distancia; la Universidad Politécnica de Madrid y la Universidad Rovira i VirgiliPresidente: Marco Fontana.- Secretario: Manuel García-Villalba Navaridas.- Vocal: Félix Terroba Ramíre

    Sistema de posicionamento externo multi-câmara

    Get PDF
    A necessidade de informação externa, de referência, acerca da atitude e posição de um dado robô constitui a motivação da presente dissertação, onde foram desenvolvidos algoritmos para auxílio na navegação, ou simplesmente para aferição e validação da resposta do sistema autónomo ao meio envolvente. O principal contributo passa pelo desenvolvimento de um sistema de posicionamento externo multi-câmara, que determina a localização e atitude de sistemas robóticos ou objetos, com base em marcadores óticos ativos. Através da caracterização dos sistemas robóticos e dos cenários de atuação, percebe-se a necessidade de desenvolver um sistema de visão constituído por multi-câmaras para endereçar as situações de oclusão, aumentar a cobertura espacial e potenciar a qualidade dos resultados de posicionamento. Assim é proposta uma arquitetura para um sistema global dirigido aos vários requisitos identificados. A utilização de múltiplas câmaras e objetos de interesse munidos de um conjunto de marcadores ativos, torna viável o seguimento em tempo real destes objetos, em ambiente terrestre, aéreo ou subaquático. Esta arquitetura do sistema global, é demonstrada através de um sistema composto por três câmaras e uma plataforma de quatro Light-Emitting Diodes (LEDs) para validação de múltiplos módulos de software, nomeadamente: identificação e validação de pontos de interesse em imagens; cálculo da posição tridimensional dos marcadores através da combinação de pares de câmaras stereo e geometria 'multi view'; seleção de resultados mais precisos; cálculo da atitude do alvo. Para validação do sistema implementado, foram realizados ensaios experimentais que demonstram o correto funcionamento dos vários módulos do sistema, para diversas configurações e condicionantes. Simultaneamente, instalaram-se dois dispositivos comerciais (Faro e Pixhawk) para aferição e comparação de resultados. Os resultados experimentais mostraram uma clara vantagem do sistema de posicionamento multi-câmara face ao stereo, quer em qualidade de informação de posicionamento obtida, quer nos aspetos de cobertura espacial e oclusões.This dissertation aims to contribute to development Groundtruth System of Multicamera Vision that is also to determinate the pose of robotic systems or objects based on active optical markers. The focus of this thesis is the absence of external information about the target’s attitude to correct navigation algorithms or simply to validate the answer of autonomous system to the surrounding environment. Through the description of the robotic systems in site, it was noticed there was a need to develop a vision system constituted by multi cameras, to address occlusion situations, increase the floor space and up-level the results accuracy. Highly motivated, it is proposed architecture for a global system facing the multiple identified requirements. By using multiple cameras and objects of interest with several active markers, it has become possible to follow objects in real time different environments such as land, air or underwater. Regarding about of global architecture system, it is presented a contribution through a system composed by three cameras and a platform with four Light-Emitting Diodes (LEDs) to validate the points of interest on images. Through this process, it is also possible to measure the tridimensional position of the markers using stereo cameras pairs with different combinations and multi view triangulation, in order to obtain a precise selection of results and targets attitude measurement. In order to validate the implemented system, it were performed several trials showing that the system multiple modules converge to the ideal results under various conditions. Simultaneously, two commercial devices were set up and used (Faro Focus and Pixhawk) to compare results of position and attitude
    corecore