91 research outputs found

    Layered Interpretation of Street View Images

    Full text link
    We propose a layered street view model to encode both depth and semantic information on street view images for autonomous driving. Recently, stixels, stix-mantics, and tiered scene labeling methods have been proposed to model street view images. We propose a 4-layer street view model, a compact representation over the recently proposed stix-mantics model. Our layers encode semantic classes like ground, pedestrians, vehicles, buildings, and sky in addition to the depths. The only input to our algorithm is a pair of stereo images. We use a deep neural network to extract the appearance features for semantic classes. We use a simple and an efficient inference algorithm to jointly estimate both semantic classes and layered depth values. Our method outperforms other competing approaches in Daimler urban scene segmentation dataset. Our algorithm is massively parallelizable, allowing a GPU implementation with a processing speed about 9 fps.Comment: The paper will be presented in the 2015 Robotics: Science and Systems Conference (RSS

    Effects of Ground Manifold Modeling on the Accuracy of Stixel Calculations

    Get PDF
    This paper highlights the role of ground manifold modeling for stixel calculations; stixels are medium-level data representations used for the development of computer vision modules for self-driving cars. By using single-disparity maps and simplifying ground manifold models, calculated stixels may suffer from noise, inconsistency, and false-detection rates for obstacles, especially in challenging datasets. Stixel calculations can be improved with respect to accuracy and robustness by using more adaptive ground manifold approximations. A comparative study of stixel results, obtained for different ground-manifold models (e.g., plane-fitting, line-fitting in v-disparities or polynomial approximation, and graph cut), defines the main part of this paper. This paper also considers the use of trinocular stereo vision and shows that this provides options to enhance stixel results, compared with the binocular recording. Comprehensive experiments are performed on two publicly available challenging datasets. We also use a novel way for comparing calculated stixels with ground truth. We compare depth information, as given by extracted stixels, with ground-truth depth, provided by depth measurements using a highly accurate LiDAR range sensor (as available in one of the public datasets). We evaluate the accuracy of four different ground-manifold methods. The experimental results also include quantitative evaluations of the tradeoff between accuracy and run time. As a result, the proposed trinocular recording together with graph-cut estimation of ground manifolds appears to be a recommended way, also considering challenging weather and lighting conditions

    Slanted Stixels: A way to represent steep streets

    Get PDF
    This work presents and evaluates a novel compact scene representation based on Stixels that infers geometric and semantic information. Our approach overcomes the previous rather restrictive geometric assumptions for Stixels by introducing a novel depth model to account for non-flat roads and slanted objects. Both semantic and depth cues are used jointly to infer the scene representation in a sound global energy minimization formulation. Furthermore, a novel approximation scheme is introduced in order to significantly reduce the computational complexity of the Stixel algorithm, and then achieve real-time computation capabilities. The idea is to first perform an over-segmentation of the image, discarding the unlikely Stixel cuts, and apply the algorithm only on the remaining Stixel cuts. This work presents a novel over-segmentation strategy based on a Fully Convolutional Network (FCN), which outperforms an approach based on using local extrema of the disparity map. We evaluate the proposed methods in terms of semantic and geometric accuracy as well as run-time on four publicly available benchmark datasets. Our approach maintains accuracy on flat road scene datasets while improving substantially on a novel non-flat road dataset.Comment: Journal preprint (published in IJCV 2019: https://link.springer.com/article/10.1007/s11263-019-01226-9). arXiv admin note: text overlap with arXiv:1707.0539

    Computer vision for advanced driver assistance systems

    Get PDF
    • ā€¦
    corecore