5,553 research outputs found

    Pixel-wise parameter adaptation for single-exposure extension of the image dynamic range

    Get PDF
    High dynamic range imaging is central in application fields like surveillance, intelligent transportation and advanced driving assistance systems. In some scenarios, methods for dynamic range extension based on multiple captures have shown limitations in apprehending the dynamics of the scene. Artifacts appear that can put at risk the correct segmentation of objects in the image. We have developed several techniques for the on-chip implementation of single-exposure extension of the dynamic range. We work on the upper extreme of the range, i. e. administering the available full-well capacity. Parameters are adapted pixel-wise in order to accommodate a high intra-scene range of illuminationsPeer reviewe

    Pixel-wise parameter adaptation for single-exposure extension of the image dynamic range

    Get PDF
    High dynamic range imaging is central in application fields like surveillance, intelligent transportation and advanced driving assistance systems. In some scenarios, methods for dynamic range extension based on multiple captures have shown limitations in apprehending the dynamics of the scene. Artifacts appear that can put at risk the correct segmentation of objects in the image. We have developed several techniques for the on-chip implementation of single-exposure extension of the dynamic range. We work on the upper extreme of the range, i. e. administering the available full-well capacity. Parameters are adapted pixel-wise in order to accommodate a high intra-scene range of illuminations.Ministerio de Economía (MINECO) TEC2015-66878-C3-1-RJunta de Andalucía P12-TIC 233

    Fully-automatic inverse tone mapping algorithm based on dynamic mid-level tone mapping

    Get PDF
    High Dynamic Range (HDR) displays can show images with higher color contrast levels and peak luminosities than the common Low Dynamic Range (LDR) displays. However, most existing video content is recorded and/or graded in LDR format. To show LDR content on HDR displays, it needs to be up-scaled using a so-called inverse tone mapping algorithm. Several techniques for inverse tone mapping have been proposed in the last years, going from simple approaches based on global and local operators to more advanced algorithms such as neural networks. Some of the drawbacks of existing techniques for inverse tone mapping are the need for human intervention, the high computation time for more advanced algorithms, limited low peak brightness, and the lack of the preservation of the artistic intentions. In this paper, we propose a fully-automatic inverse tone mapping operator based on mid-level mapping capable of real-time video processing. Our proposed algorithm allows expanding LDR images into HDR images with peak brightness over 1000 nits, preserving the artistic intentions inherent to the HDR domain. We assessed our results using the full-reference objective quality metrics HDR-VDP-2.2 and DRIM, and carrying out a subjective pair-wise comparison experiment. We compared our results with those obtained with the most recent methods found in the literature. Experimental results demonstrate that our proposed method outperforms the current state-of-the-art of simple inverse tone mapping methods and its performance is similar to other more complex and time-consuming advanced techniques

    High-order myopic coronagraphic phase diversity (COFFEE) for wave-front control in high-contrast imaging systems

    Full text link
    The estimation and compensation of quasi-static aberrations is mandatory to reach the ultimate performance of high-contrast imaging systems. COFFEE is a focal plane wave-front sensing method that consists in the extension of phase diversity to high-contrast imaging systems. Based on a Bayesian approach, it estimates the quasi-static aberrations from two focal plane images recorded from the scientific camera itself. In this paper, we present COFFEE's extension which allows an estimation of low and high order aberrations with nanometric precision for any coronagraphic device. The performance is evaluated by realistic simulations, performed in the SPHERE instrument framework. We develop a myopic estimation that allows us to take into account an imperfect knowledge on the used diversity phase. Lastly, we evaluate COFFEE's performance in a compensation process, to optimize the contrast on the detector, and show it allows one to reach the 10^-6 contrast required by SPHERE at a few resolution elements from the star. Notably, we present a non-linear energy minimization method which can be used to reach very high contrast levels (better than 10^-7 in a SPHERE-like context)Comment: Accepted in Optics Expres

    A Method to Achieve High Dynamic Range in a CMOS Image Sensor Using Interleaved Row Readout

    Get PDF
    ©2022 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/We present a readout scheme for CMOS image sensors that can be used to achieve arbitrarily high dynamic range (HDR) in principle. The linear full well capacity (LFWC) in high signal regions was extended 50 times from 20 to 984 ke − via an interlaced row-wise readout order, while the noise floor remained unchanged in low signal regions, resulting in a 34-dB increase in DR. The peak signal-to-noise ratio (PSNR) is increased in a continuous fashion from 43 to 60 dB. This was achieved by summing user-selected rows that were read out multiple times. Centroiding uncertainties were lowered when template-fitting a projected pattern, compared to the standard readout scheme. Example applications are aimed at scientific imaging due to the linearity and PSNR increase.Peer reviewe
    corecore