80 research outputs found

    Study and training of deep learning models for scene graph generation from non-static environments

    Get PDF

    Volumetric Weak Supervision for Semantic Segmentation

    Get PDF
    Semantic segmentation is a popular task in computer vision. Fully supervised methods are data hungry, they require pixel precise annotations for thousands of images. To reduce user annotation efforts, weak supervision for semantic segmentation is becoming an area of increasing interest. Weak supervision can take many forms: bounding boxes, scribbles, image level labels. Image level supervision is the least annotation demanding, as the user is asked to just name the object classes present in the image. In this thesis, we propose a new type of weak supervision which is a generalization of image level supervision: Volumetric Supervision. In addition to providing the object classes present in the image, the user also provides the approximate size of each object class present in the images. This type of annotation is still very undemanding on the users time. To incorporate volumetric information into weakly supervised segmentation, we develop two volumetric loss functions that penalize deviation from the object size annotated by the user. Almost any semantic segmentation method with image level weak supervision can be transformed into a segmentation method with volumetric supervision using volumetric loss functions. To show the usefulness of volumetric supervision, we chose four popular methods for image level weak supervision and transform them into volumetric supervision methods. For evaluation, we create a simulated dataset that contains size information for the object classes. We also test the sensitivity of our approach to the possible mistakes in the size information dataset. Our experimental evaluation shows that volumetric supervision gives a significant improvement over image level supervision, however it is sensitive to mistakes in the size information provided by the user

    Lidar-based scene understanding for autonomous driving using deep learning

    Get PDF
    With over 1.35 million fatalities related to traffic accidents worldwide, autonomous driving was foreseen at the beginning of this century as a feasible solution to improve security in our roads. Nevertheless, it is meant to disrupt our transportation paradigm, allowing to reduce congestion, pollution, and costs, while increasing the accessibility, efficiency, and reliability of the transportation for both people and goods. Although some advances have gradually been transferred into commercial vehicles in the way of Advanced Driving Assistance Systems (ADAS) such as adaptive cruise control, blind spot detection or automatic parking, however, the technology is far from mature. A full understanding of the scene is actually needed so that allowing the vehicles to be aware of the surroundings, knowing the existing elements of the scene, as well as their motion, intentions and interactions. In this PhD dissertation, we explore new approaches for understanding driving scenes from 3D LiDAR point clouds by using Deep Learning methods. To this end, in Part I we analyze the scene from a static perspective using independent frames to detect the neighboring vehicles. Next, in Part II we develop new ways for understanding the dynamics of the scene. Finally, in Part III we apply all the developed methods to accomplish higher level challenges such as segmenting moving obstacles while obtaining their rigid motion vector over the ground. More specifically, in Chapter 2 we develop a 3D vehicle detection pipeline based on a multi-branch deep-learning architecture and propose a Front (FR-V) and a Bird’s Eye view (BE-V) as 2D representations of the 3D point cloud to serve as input for training our models. Later on, in Chapter 3 we apply and further test this method on two real uses-cases, for pre-filtering moving obstacles while creating maps to better localize ourselves on subsequent days, as well as for vehicle tracking. From the dynamic perspective, in Chapter 4 we learn from the 3D point cloud a novel dynamic feature that resembles optical flow from RGB images. For that, we develop a new approach to leverage RGB optical flow as pseudo ground truth for training purposes but allowing the use of only 3D LiDAR data at inference time. Additionally, in Chapter 5 we explore the benefits of combining classification and regression learning problems to face the optical flow estimation task in a joint coarse-and-fine manner. Lastly, in Chapter 6 we gather the previous methods and demonstrate that with these independent tasks we can guide the learning of higher challenging problems such as segmentation and motion estimation of moving vehicles from our own moving perspective.Con más de 1,35 millones de muertes por accidentes de tráfico en el mundo, a principios de siglo se predijo que la conducción autónoma sería una solución viable para mejorar la seguridad en nuestras carreteras. Además la conducción autónoma está destinada a cambiar nuestros paradigmas de transporte, permitiendo reducir la congestión del tráfico, la contaminación y el coste, a la vez que aumentando la accesibilidad, la eficiencia y confiabilidad del transporte tanto de personas como de mercancías. Aunque algunos avances, como el control de crucero adaptativo, la detección de puntos ciegos o el estacionamiento automático, se han transferido gradualmente a vehículos comerciales en la forma de los Sistemas Avanzados de Asistencia a la Conducción (ADAS), la tecnología aún no ha alcanzado el suficiente grado de madurez. Se necesita una comprensión completa de la escena para que los vehículos puedan entender el entorno, detectando los elementos presentes, así como su movimiento, intenciones e interacciones. En la presente tesis doctoral, exploramos nuevos enfoques para comprender escenarios de conducción utilizando nubes de puntos en 3D capturadas con sensores LiDAR, para lo cual empleamos métodos de aprendizaje profundo. Con este fin, en la Parte I analizamos la escena desde una perspectiva estática para detectar vehículos. A continuación, en la Parte II, desarrollamos nuevas formas de entender las dinámicas del entorno. Finalmente, en la Parte III aplicamos los métodos previamente desarrollados para lograr desafíos de nivel superior, como segmentar obstáculos dinámicos a la vez que estimamos su vector de movimiento sobre el suelo. Específicamente, en el Capítulo 2 detectamos vehículos en 3D creando una arquitectura de aprendizaje profundo de dos ramas y proponemos una vista frontal (FR-V) y una vista de pájaro (BE-V) como representaciones 2D de la nube de puntos 3D que sirven como entrada para entrenar nuestros modelos. Más adelante, en el Capítulo 3 aplicamos y probamos aún más este método en dos casos de uso reales, tanto para filtrar obstáculos en movimiento previamente a la creación de mapas sobre los que poder localizarnos mejor en los días posteriores, como para el seguimiento de vehículos. Desde la perspectiva dinámica, en el Capítulo 4 aprendemos de la nube de puntos en 3D una característica dinámica novedosa que se asemeja al flujo óptico sobre imágenes RGB. Para ello, desarrollamos un nuevo enfoque que aprovecha el flujo óptico RGB como pseudo muestras reales para entrenamiento, usando solo information 3D durante la inferencia. Además, en el Capítulo 5 exploramos los beneficios de combinar los aprendizajes de problemas de clasificación y regresión para la tarea de estimación de flujo óptico de manera conjunta. Por último, en el Capítulo 6 reunimos los métodos anteriores y demostramos que con estas tareas independientes podemos guiar el aprendizaje de problemas de más alto nivel, como la segmentación y estimación del movimiento de vehículos desde nuestra propia perspectivaAmb més d’1,35 milions de morts per accidents de trànsit al món, a principis de segle es va predir que la conducció autònoma es convertiria en una solució viable per millorar la seguretat a les nostres carreteres. D’altra banda, la conducció autònoma està destinada a canviar els paradigmes del transport, fent possible així reduir la densitat del trànsit, la contaminació i el cost, alhora que augmentant l’accessibilitat, l’eficiència i la confiança del transport tant de persones com de mercaderies. Encara que alguns avenços, com el control de creuer adaptatiu, la detecció de punts cecs o l’estacionament automàtic, s’han transferit gradualment a vehicles comercials en forma de Sistemes Avançats d’Assistència a la Conducció (ADAS), la tecnologia encara no ha arribat a aconseguir el grau suficient de maduresa. És necessària, doncs, una total comprensió de l’escena de manera que els vehicles puguin entendre l’entorn, detectant els elements presents, així com el seu moviment, intencions i interaccions. A la present tesi doctoral, explorem nous enfocaments per tal de comprendre les diferents escenes de conducció utilitzant núvols de punts en 3D capturats amb sensors LiDAR, mitjançant l’ús de mètodes d’aprenentatge profund. Amb aquest objectiu, a la Part I analitzem l’escena des d’una perspectiva estàtica per a detectar vehicles. A continuació, a la Part II, desenvolupem noves formes d’entendre les dinàmiques de l’entorn. Finalment, a la Part III apliquem els mètodes prèviament desenvolupats per a aconseguir desafiaments d’un nivell superior, com, per exemple, segmentar obstacles dinàmics al mateix temps que estimem el seu vector de moviment respecte al terra. Concretament, al Capítol 2 detectem vehicles en 3D creant una arquitectura d’aprenentatge profund amb dues branques, i proposem una vista frontal (FR-V) i una vista d’ocell (BE-V) com a representacions 2D del núvol de punts 3D que serveixen com a punt de partida per entrenar els nostres models. Més endavant, al Capítol 3 apliquem i provem de nou aquest mètode en dos casos d’ús reals, tant per filtrar obstacles en moviment prèviament a la creació de mapes en els quals poder localitzar-nos millor en dies posteriors, com per dur a terme el seguiment de vehicles. Des de la perspectiva dinàmica, al Capítol 4 aprenem una nova característica dinàmica del núvol de punts en 3D que s’assembla al flux òptic sobre imatges RGB. Per a fer-ho, desenvolupem un nou enfocament que aprofita el flux òptic RGB com pseudo mostres reals per a entrenament, utilitzant només informació 3D durant la inferència. Després, al Capítol 5 explorem els beneficis que s’obtenen de combinar els aprenentatges de problemes de classificació i regressió per la tasca d’estimació de flux òptic de manera conjunta. Finalment, al Capítol 6 posem en comú els mètodes anteriors i demostrem que mitjançant aquests processos independents podem abordar l’aprenentatge de problemes més complexos, com la segmentació i estimació del moviment de vehicles des de la nostra pròpia perspectiva

    Global Dynamics of the Offshore Wind Energy Sector Derived from Earth Observation Data - Deep Learning Based Object Detection Optimised with Synthetic Training Data for Offshore Wind Energy Infrastructure Extraction from Sentinel-1 Imagery

    Get PDF
    The expansion of renewable energies is being driven by the gradual phaseout of fossil fuels in order to reduce greenhouse gas emissions, the steadily increasing demand for energy and, more recently, by geopolitical events. The offshore wind energy sector is on the verge of a massive expansion in Europe, the United Kingdom, China, but also in the USA, South Korea and Vietnam. Accordingly, the largest marine infrastructure projects to date will be carried out in the upcoming decades, with thousands of offshore wind turbines being installed. In order to accompany this process globally and to provide a database for research, development and monitoring, this dissertation presents a deep learning-based approach for object detection that enables the derivation of spatiotemporal developments of offshore wind energy infrastructures from satellite-based radar data of the Sentinel-1 mission. For training the deep learning models for offshore wind energy infrastructure detection, an approach is presented that makes it possible to synthetically generate remote sensing data and the necessary annotation for the supervised deep learning process. In this synthetic data generation process, expert knowledge about image content and sensor acquisition techniques is made machine-readable. Finally, extensive and highly variable training data sets are generated from this knowledge representation, with which deep learning models can learn to detect objects in real-world satellite data. The method for the synthetic generation of training data based on expert knowledge offers great potential for deep learning in Earth observation. Applications of deep learning based methods can be developed and tested faster with this procedure. Furthermore, the synthetically generated and thus controllable training data offer the possibility to interpret the learning process of the optimised deep learning models. The method developed in this dissertation to create synthetic remote sensing training data was finally used to optimise deep learning models for the global detection of offshore wind energy infrastructure. For this purpose, images of the entire global coastline from ESA's Sentinel-1 radar mission were evaluated. The derived data set includes over 9,941 objects, which distinguish offshore wind turbines, transformer stations and offshore wind energy infrastructures under construction from each other. In addition to this spatial detection, a quarterly time series from July 2016 to June 2021 was derived for all objects. This time series reveals the start of construction, the construction phase and the time of completion with subsequent operation for each object. The derived offshore wind energy infrastructure data set provides the basis for an analysis of the development of the offshore wind energy sector from July 2016 to June 2021. For this analysis, further attributes of the detected offshore wind turbines were derived. The most important of these are the height and installed capacity of a turbine. The turbine height was calculated by a radargrammetric analysis of the previously detected Sentinel-1 signal and then used to statistically model the installed capacity. The results show that in June 2021, 8,885 offshore wind turbines with a total capacity of 40.6~GW were installed worldwide. The largest installed capacities are in the EU (15.2~GW), China (14.1~GW) and the United Kingdom (10.7~GW). From July 2016 to June 2021, China has expanded 13~GW of offshore wind energy infrastructure. The EU has installed 8~GW and the UK 5.8~GW of offshore wind energy infrastructure in the same period. This temporal analysis shows that China was the main driver of the expansion of the offshore wind energy sector in the period under investigation. The derived data set for the description of the offshore wind energy sector was made publicly available. It is thus freely accessible to all decision-makers and stakeholders involved in the development of offshore wind energy projects. Especially in the scientific context, it serves as a database that enables a wide range of investigations. Research questions regarding offshore wind turbines themselves as well as the influence of the expansion in the coming decades can be investigated. This supports the imminent and urgently needed expansion of offshore wind energy in order to promote sustainable expansion in addition to the expansion targets that have been set

    A Comprehensive survey on deep future frame video prediction

    Get PDF
    El present projecte planteja l'estudi comprensiu i extens per a la tasca de predicció de fotogrames donada una seqüència de vídeo. Mitjançant l'anàlisi de l'estat de l'art en generació d'imatges, xarxes convolucionals i adversàries l'objectiu és establir les forces i utilitats d'aquesta tasca
    corecore