784 research outputs found

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included

    UAV-Multispectral Sensed Data Band Co-Registration Framework

    Get PDF
    Precision farming has greatly benefited from new technologies over the years. The use of multispectral and hyperspectral sensors coupled to Unmanned Aerial Vehicles (UAV) has enabled farms to monitor crops, improve the use of resources and reduce costs. Despite being widely used, multispectral images present a natural misalignment among the various spectra due to the use of different sensors. The variation of the analyzed spectrum also leads to a loss of characteristics among the bands which hinders the feature detection process among the bands, which makes the alignment process complex. In this work, we propose a new framework for the band co-registration process based on two premises: i) the natural misalignment is an attribute of the camera, so it does not change during the acquisition process; ii) the speed of displacement of the UAV when compared to the speed between the acquisition of the first to the last band, is not sufficient to create significant distortions. We compared our results with the ground-truth generated by a specialist and with other methods present in the literature. The proposed framework had an average back-projection (BP) error of 0.425 pixels, this result being 335% better than the evaluated frameworks.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorDissertação (Mestrado)A agricultura de precisão se beneficiou muito das novas tecnologias ao longo dos anos. O uso de sensores multiespectrais e hiperespectrais acoplados aos Veículos Aéreos Não Tripulados (VANT) permitiu que as fazendas monitorassem as lavouras, melhorassem o uso de recursos e reduzissem os custos. Apesar de amplamente utilizadas, as imagens multiespectrais apresentam um desalinhamento natural entre os vários espectros devido ao uso de diferentes sensores. A variação do espectro analisado também leva à perda de características entre as bandas, o que dificulta o processo de detecção de atributos entre as bandas, o que torna complexo o processo de alinhamento. Neste trabalho, propomos um novo framework para o processo de alinhamento entre as bandas com base em duas premissas: i) o desalinhamento natural é um atributo da câmera, e por esse motivo ele não é alterado durante o processo de aquisição; ii) a velocidade de deslocamento do VANT, quando comparada à velocidade entre a aquisição da primeira e a última banda, não é suficiente para criar distorções significativas. Os resultados obtidos foram comparados com o padrão ouro gerado por um especialista e com outros métodos presentes na literatura. O framework proposto teve um back-projection error (BP) de 0, 425 pixels, sendo este resultado 335% melhor aos frameworks avaliados

    Research Issues in Image Registration for Remote Sensing

    Get PDF
    Image registration is an important element in data processing for remote sensing with many applications and a wide range of solutions. Despite considerable investigation the field has not settled on a definitive solution for most applications and a number of questions remain open. This article looks at selected research issues by surveying the experience of operational satellite teams, application-specific requirements for Earth science, and our experiments in the evaluation of image registration algorithms with emphasis on the comparison of algorithms for subpixel accuracy. We conclude that remote sensing applications put particular demands on image registration algorithms to take into account domain-specific knowledge of geometric transformations and image content

    Service robotics and machine learning for close-range remote sensing

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Evaluating Fourier Cross-Correlation Sub-Pixel Registration in Landsat Images

    Full text link
    [EN] Multi-temporal analysis is one of the main applications of remote sensing, and Landsat imagery has been one of the main resources for many years. However, the moderate spatial resolution (30 m) restricts their use for high precision applications. In this paper, we simulate Landsat scenes to evaluate, by means of an exhaustive number of tests, a subpixel registration process based on phase correlation and the upsampling of the Fourier transform. From a high resolution image (0.5 m), two sets of 121 synthetic images of fixed translations are created to simulate Landsat scenes (30 m). In this sense, the use of the point spread function (PSF) of the Landsat TM (Thematic Mapper) sensor in the downsampling process improves the results compared to those obtained by simple averaging. In the process of obtaining sub-pixel accuracy by upsampling the cross correlation matrix by a certain factor, the limit of improvement is achieved at 0.1 pixels. We show that image size affects the cross correlation results, but for images equal or larger than 100 x 100 pixels similar accuracies are expected. The large dataset used in the tests allows us to describe the intra-pixel distribution of the errors obtained in the registration process and how they follow a waveform instead of random/stochastic behavior. The amplitude of this waveform, representing the highest expected error, is estimated at 1.88 m. Finally, a validation test is performed over a set of sub-pixel shorelines obtained from actual Landsat-5 TM, Landsat-7 ETM+ (Enhanced Thematic Mapper Plus) and Landsat-8 OLI (Operation Land Imager) scenes. The evaluation of the shoreline accuracy with respect to permanent seawalls, before and after the registration, shows the importance of the registering process and serves as a non-synthetic validation test that reinforce previous results.This study has been supported by a research project from the Spanish Ministry of Economy and Competitiveness (CGL2015-69906-R).Almonacid Caballer, J.; Pardo Pascual, JE.; Ruiz Fernández, LÁ. (2017). Evaluating Fourier Cross-Correlation Sub-Pixel Registration in Landsat Images. Remote Sensing. 9(10). https://doi.org/10.3390/rs9101051S91

    The Need for Accurate Pre-processing and Data Integration for the Application of Hyperspectral Imaging in Mineral Exploration

    Get PDF
    Die hyperspektrale Bildgebung stellt eine Schlüsseltechnologie in der nicht-invasiven Mineralanalyse dar, sei es im Labormaßstab oder als fernerkundliche Methode. Rasante Entwicklungen im Sensordesign und in der Computertechnik hinsichtlich Miniaturisierung, Bildauflösung und Datenqualität ermöglichen neue Einsatzgebiete in der Erkundung mineralischer Rohstoffe, wie die drohnen-gestützte Datenaufnahme oder digitale Aufschluss- und Bohrkernkartierung. Allgemeingültige Datenverarbeitungsroutinen fehlen jedoch meist und erschweren die Etablierung dieser vielversprechenden Ansätze. Besondere Herausforderungen bestehen hinsichtlich notwendiger radiometrischer und geometrischer Datenkorrekturen, der räumlichen Georeferenzierung sowie der Integration mit anderen Datenquellen. Die vorliegende Arbeit beschreibt innovative Arbeitsabläufe zur Lösung dieser Problemstellungen und demonstriert die Wichtigkeit der einzelnen Schritte. Sie zeigt das Potenzial entsprechend prozessierter spektraler Bilddaten für komplexe Aufgaben in Mineralexploration und Geowissenschaften.Hyperspectral imaging (HSI) is one of the key technologies in current non-invasive material analysis. Recent developments in sensor design and computer technology allow the acquisition and processing of high spectral and spatial resolution datasets. In contrast to active spectroscopic approaches such as X-ray fluorescence or laser-induced breakdown spectroscopy, passive hyperspectral reflectance measurements in the visible and infrared parts of the electromagnetic spectrum are considered rapid, non-destructive, and safe. Compared to true color or multi-spectral imagery, a much larger range and even small compositional changes of substances can be differentiated and analyzed. Applications of hyperspectral reflectance imaging can be found in a wide range of scientific and industrial fields, especially when physically inaccessible or sensitive samples and processes need to be analyzed. In geosciences, this method offers a possibility to obtain spatially continuous compositional information of samples, outcrops, or regions that might be otherwise inaccessible or too large, dangerous, or environmentally valuable for a traditional exploration at reasonable expenditure. Depending on the spectral range and resolution of the deployed sensor, HSI can provide information about the distribution of rock-forming and alteration minerals, specific chemical compounds and ions. Traditional operational applications comprise space-, airborne, and lab-scale measurements with a usually (near-)nadir viewing angle. The diversity of available sensors, in particular the ongoing miniaturization, enables their usage from a wide range of distances and viewing angles on a large variety of platforms. Many recent approaches focus on the application of hyperspectral sensors in an intermediate to close sensor-target distance (one to several hundred meters) between airborne and lab-scale, usually implying exceptional acquisition parameters. These comprise unusual viewing angles as for the imaging of vertical targets, specific geometric and radiometric distortions associated with the deployment of small moving platforms such as unmanned aerial systems (UAS), or extreme size and complexity of data created by large imaging campaigns. Accurate geometric and radiometric data corrections using established methods is often not possible. Another important challenge results from the overall variety of spatial scales, sensors, and viewing angles, which often impedes a combined interpretation of datasets, such as in a 2D geographic information system (GIS). Recent studies mostly referred to work with at least partly uncorrected data that is not able to set the results in a meaningful spatial context. These major unsolved challenges of hyperspectral imaging in mineral exploration initiated the motivation for this work. The core aim is the development of tools that bridge data acquisition and interpretation, by providing full image processing workflows from the acquisition of raw data in the field or lab, to fully corrected, validated and spatially registered at-target reflectance datasets, which are valuable for subsequent spectral analysis, image classification, or fusion in different operational environments at multiple scales. I focus on promising emerging HSI approaches, i.e.: (1) the use of lightweight UAS platforms, (2) mapping of inaccessible vertical outcrops, sometimes at up to several kilometers distance, (3) multi-sensor integration for versatile sample analysis in the near-field or lab-scale, and (4) the combination of reflectance HSI with other spectroscopic methods such as photoluminescence (PL) spectroscopy for the characterization of valuable elements in low-grade ores. In each topic, the state of the art is analyzed, tailored workflows are developed to meet key challenges and the potential of the resulting dataset is showcased on prominent mineral exploration related examples. Combined in a Python toolbox, the developed workflows aim to be versatile in regard to utilized sensors and desired applications

    A collaborative change detection approach on multi-sensor spatial imagery for desertwetland monitoring after a flash flood in Southern Morocco

    Full text link
    © 2019 by the authors. This study aims to present a technique that combines multi-sensor spatial data to monitor wetland areas after a flash-flood event in a Saharan arid region. To extract the most efficient information, seven satellite images (radar and optical) taken before and after the event were used. To achieve the objectives, this study used Sentinel-1 data to discriminate water body and soil roughness, and optical data to monitor the soil moisture after the event. The proposed method combines two approaches: one based on spectral processing, and the other based on categorical processing. The first step was to extract four spectral indices and utilize change vector analysis on multispectral diachronic images from three MSI Sentinel-2 images and two Landsat-8 OLI images acquired before and after the event. The second step was performed using pattern classification techniques, namely, linear classifiers based on support vector machines (SVM) with Gaussian kernels. The results of these two approaches were fused to generate a collaborative wetland change map. The application of co-registration and supervised classification based on textural and intensity information from Radar Sentinel-1 images taken before and after the event completes this work. The results obtained demonstrate the importance of the complementarity of multi-sensor images and a multi-approach methodology to better monitor changes to a wetland area after a flash-flood disaster

    Deep learning-based change detection in remote sensing images:a review

    Get PDF
    Images gathered from different satellites are vastly available these days due to the fast development of remote sensing (RS) technology. These images significantly enhance the data sources of change detection (CD). CD is a technique of recognizing the dissimilarities in the images acquired at distinct intervals and are used for numerous applications, such as urban area development, disaster management, land cover object identification, etc. In recent years, deep learning (DL) techniques have been used tremendously in change detection processes, where it has achieved great success because of their practical applications. Some researchers have even claimed that DL approaches outperform traditional approaches and enhance change detection accuracy. Therefore, this review focuses on deep learning techniques, such as supervised, unsupervised, and semi-supervised for different change detection datasets, such as SAR, multispectral, hyperspectral, VHR, and heterogeneous images, and their advantages and disadvantages will be highlighted. In the end, some significant challenges are discussed to understand the context of improvements in change detection datasets and deep learning models. Overall, this review will be beneficial for the future development of CD methods

    Remote sensing image fusion on 3D scenarios: A review of applications for agriculture and forestry

    Get PDF
    Three-dimensional (3D) image mapping of real-world scenarios has a great potential to provide the user with a more accurate scene understanding. This will enable, among others, unsupervised automatic sampling of meaningful material classes from the target area for adaptive semi-supervised deep learning techniques. This path is already being taken by the recent and fast-developing research in computational fields, however, some issues related to computationally expensive processes in the integration of multi-source sensing data remain. Recent studies focused on Earth observation and characterization are enhanced by the proliferation of Unmanned Aerial Vehicles (UAV) and sensors able to capture massive datasets with a high spatial resolution. In this scope, many approaches have been presented for 3D modeling, remote sensing, image processing and mapping, and multi-source data fusion. This survey aims to present a summary of previous work according to the most relevant contributions for the reconstruction and analysis of 3D models of real scenarios using multispectral, thermal and hyperspectral imagery. Surveyed applications are focused on agriculture and forestry since these fields concentrate most applications and are widely studied. Many challenges are currently being overcome by recent methods based on the reconstruction of multi-sensorial 3D scenarios. In parallel, the processing of large image datasets has recently been accelerated by General-Purpose Graphics Processing Unit (GPGPU) approaches that are also summarized in this work. Finally, as a conclusion, some open issues and future research directions are presented.European Commission 1381202-GEU PYC20-RE-005-UJA IEG-2021Junta de Andalucia 1381202-GEU PYC20-RE-005-UJA IEG-2021Instituto de Estudios GiennesesEuropean CommissionSpanish Government UIDB/04033/2020DATI-Digital Agriculture TechnologiesPortuguese Foundation for Science and Technology 1381202-GEU FPU19/0010

    AUTOMATIC REGISTRATION OF MULTI-SOURCE MEDIUM RESOLUTION SATELLITE DATA

    Get PDF
    Multi-temporal and multi-source images gathered from satellite platforms are nowadays a fundamental source of information in several domains. One of the main challenges in the fusion of different data sets consists in the registration issue, i.e., the integration into the same framework of images collected with different spatial resolution and acquisition geometry. This paper presents a novel methodology to accomplish this task on the basis of a method that stands out from existing approaches. The whole data (time series) set is simultaneously co-registered with a two-dimensional multiple Least Squares adjustment with different geometric transformations implemented. Some tests were carried out with different geometric transformation models (including similarity, affine, and polynomial) and variable matching thresholds. They showed a sub-pixel precision after the computation of multiple adjustment. The use of multi-image corresponding points allowed the improvement of the registration accuracy and reliability of a time series made up of data imaged with different sensors
    corecore