7,373 research outputs found

    Process of image super-resolution

    Full text link
    In this paper we explain a process of super-resolution reconstruction allowing to increase the resolution of an image.The need for high-resolution digital images exists in diverse domains, for example the medical and spatial domains. The obtaining of high-resolution digital images can be made at the time of the shooting, but it is often synonymic of important costs because of the necessary material to avoid such costs, it is known how to use methods of super-resolution reconstruction, consisting from one or several low resolution images to obtain a high-resolution image. The american patent US 9208537 describes such an algorithm. A zone of one low-resolution image is isolated and categorized according to the information contained in pixels forming the borders of the zone. The category of it zone determines the type of interpolation used to add pixels in aforementioned zone, to increase the neatness of the images. It is also known how to reconstruct a low-resolution image there high-resolution image by using a model of super-resolution reconstruction whose learning is based on networks of neurons and on image or a picture library. The demand of chinese patent CN 107563965 and the scientist publication "Pixel Recursive Super Resolution", R. Dahl, M. Norouzi, J. Shlens propose such methods. The aim of this paper is to demonstrate that it is possible to reconstruct coherent human faces from very degraded pixelated images with a very fast algorithm, more faster than compressed sensing (CS), easier to compute and without deep learning, so without important technology resources, i.e. a large database of thousands training images (see arXiv:2003.13063). This technological breakthrough has been patented in 2018 with the demand of French patent FR 1855485 (https://patents.google.com/patent/FR3082980A1, see the HAL reference https://hal.archives-ouvertes.fr/hal-01875898v1).Comment: 19 pages, 10 figure

    PixColor: Pixel Recursive Colorization

    Full text link
    We propose a novel approach to automatically produce multiple colorized versions of a grayscale image. Our method results from the observation that the task of automated colorization is relatively easy given a low-resolution version of the color image. We first train a conditional PixelCNN to generate a low resolution color for a given grayscale image. Then, given the generated low-resolution color image and the original grayscale image as inputs, we train a second CNN to generate a high-resolution colorization of an image. We demonstrate that our approach produces more diverse and plausible colorizations than existing methods, as judged by human raters in a "Visual Turing Test"

    Super-Resolution for Overhead Imagery Using DenseNets and Adversarial Learning

    Full text link
    Recent advances in Generative Adversarial Learning allow for new modalities of image super-resolution by learning low to high resolution mappings. In this paper we present our work using Generative Adversarial Networks (GANs) with applications to overhead and satellite imagery. We have experimented with several state-of-the-art architectures. We propose a GAN-based architecture using densely connected convolutional neural networks (DenseNets) to be able to super-resolve overhead imagery with a factor of up to 8x. We have also investigated resolution limits of these networks. We report results on several publicly available datasets, including SpaceNet data and IARPA Multi-View Stereo Challenge, and compare performance with other state-of-the-art architectures.Comment: 9 pages, 9 figures, WACV 2018 submissio

    Deep Learning for Single Image Super-Resolution: A Brief Review

    Get PDF
    Single image super-resolution (SISR) is a notoriously challenging ill-posed problem, which aims to obtain a high-resolution (HR) output from one of its low-resolution (LR) versions. To solve the SISR problem, recently powerful deep learning algorithms have been employed and achieved the state-of-the-art performance. In this survey, we review representative deep learning-based SISR methods, and group them into two categories according to their major contributions to two essential aspects of SISR: the exploration of efficient neural network architectures for SISR, and the development of effective optimization objectives for deep SISR learning. For each category, a baseline is firstly established and several critical limitations of the baseline are summarized. Then representative works on overcoming these limitations are presented based on their original contents as well as our critical understandings and analyses, and relevant comparisons are conducted from a variety of perspectives. Finally we conclude this review with some vital current challenges and future trends in SISR leveraging deep learning algorithms.Comment: Accepted by IEEE Transactions on Multimedia (TMM
    • …
    corecore