29,150 research outputs found

    Dynamic Analysis and an Eigen Initializer for Recurrent Neural Networks

    Full text link
    In recurrent neural networks, learning long-term dependency is the main difficulty due to the vanishing and exploding gradient problem. Many researchers are dedicated to solving this issue and they proposed many algorithms. Although these algorithms have achieved great success, understanding how the information decays remains an open problem. In this paper, we study the dynamics of the hidden state in recurrent neural networks. We propose a new perspective to analyze the hidden state space based on an eigen decomposition of the weight matrix. We start the analysis by linear state space model and explain the function of preserving information in activation functions. We provide an explanation for long-term dependency based on the eigen analysis. We also point out the different behavior of eigenvalues for regression tasks and classification tasks. From the observations on well-trained recurrent neural networks, we proposed a new initialization method for recurrent neural networks, which improves consistently performance. It can be applied to vanilla-RNN, LSTM, and GRU. We test on many datasets, such as Tomita Grammars, pixel-by-pixel MNIST datasets, and machine translation datasets (Multi30k). It outperforms the Xavier initializer and kaiming initializer as well as other RNN-only initializers like IRNN and sp-RNN in several tasks

    Improved Lossy Image Compression with Priming and Spatially Adaptive Bit Rates for Recurrent Networks

    Full text link
    We propose a method for lossy image compression based on recurrent, convolutional neural networks that outperforms BPG (4:2:0 ), WebP, JPEG2000, and JPEG as measured by MS-SSIM. We introduce three improvements over previous research that lead to this state-of-the-art result. First, we show that training with a pixel-wise loss weighted by SSIM increases reconstruction quality according to several metrics. Second, we modify the recurrent architecture to improve spatial diffusion, which allows the network to more effectively capture and propagate image information through the network's hidden state. Finally, in addition to lossless entropy coding, we use a spatially adaptive bit allocation algorithm to more efficiently use the limited number of bits to encode visually complex image regions. We evaluate our method on the Kodak and Tecnick image sets and compare against standard codecs as well recently published methods based on deep neural networks

    Conditional Random Fields as Recurrent Neural Networks

    Full text link
    Pixel-level labelling tasks, such as semantic segmentation, play a central role in image understanding. Recent approaches have attempted to harness the capabilities of deep learning techniques for image recognition to tackle pixel-level labelling tasks. One central issue in this methodology is the limited capacity of deep learning techniques to delineate visual objects. To solve this problem, we introduce a new form of convolutional neural network that combines the strengths of Convolutional Neural Networks (CNNs) and Conditional Random Fields (CRFs)-based probabilistic graphical modelling. To this end, we formulate mean-field approximate inference for the Conditional Random Fields with Gaussian pairwise potentials as Recurrent Neural Networks. This network, called CRF-RNN, is then plugged in as a part of a CNN to obtain a deep network that has desirable properties of both CNNs and CRFs. Importantly, our system fully integrates CRF modelling with CNNs, making it possible to train the whole deep network end-to-end with the usual back-propagation algorithm, avoiding offline post-processing methods for object delineation. We apply the proposed method to the problem of semantic image segmentation, obtaining top results on the challenging Pascal VOC 2012 segmentation benchmark.Comment: This paper is published in IEEE ICCV 201

    Recurrent Convolutional Neural Networks for Scene Parsing

    Get PDF
    Scene parsing is a technique that consist on giving a label to all pixels in an image according to the class they belong to. To ensure a good visual coherence and a high class accuracy, it is essential for a scene parser to capture image long range dependencies. In a feed-forward architecture, this can be simply achieved by considering a sufficiently large input context patch, around each pixel to be labeled. We propose an approach consisting of a recurrent convolutional neural network which allows us to consider a large input context, while limiting the capacity of the model. Contrary to most standard approaches, our method does not rely on any segmentation methods, nor any task-specific features. The system is trained in an end-to-end manner over raw pixels, and models complex spatial dependencies with low inference cost. As the context size increases with the built-in recurrence, the system identifies and corrects its own errors. Our approach yields state-of-the-art performance on both the Stanford Background Dataset and the SIFT Flow Dataset, while remaining very fast at test time

    Generative Image Modeling Using Spatial LSTMs

    Full text link
    Modeling the distribution of natural images is challenging, partly because of strong statistical dependencies which can extend over hundreds of pixels. Recurrent neural networks have been successful in capturing long-range dependencies in a number of problems but only recently have found their way into generative image models. We here introduce a recurrent image model based on multi-dimensional long short-term memory units which are particularly suited for image modeling due to their spatial structure. Our model scales to images of arbitrary size and its likelihood is computationally tractable. We find that it outperforms the state of the art in quantitative comparisons on several image datasets and produces promising results when used for texture synthesis and inpainting
    • …
    corecore