361 research outputs found

    Book of Abstracts of the Sixth SIAM Workshop on Combinatorial Scientific Computing

    Get PDF
    Book of Abstracts of CSC14 edited by Bora UçarInternational audienceThe Sixth SIAM Workshop on Combinatorial Scientific Computing, CSC14, was organized at the Ecole Normale Supérieure de Lyon, France on 21st to 23rd July, 2014. This two and a half day event marked the sixth in a series that started ten years ago in San Francisco, USA. The CSC14 Workshop's focus was on combinatorial mathematics and algorithms in high performance computing, broadly interpreted. The workshop featured three invited talks, 27 contributed talks and eight poster presentations. All three invited talks were focused on two interesting fields of research specifically: randomized algorithms for numerical linear algebra and network analysis. The contributed talks and the posters targeted modeling, analysis, bisection, clustering, and partitioning of graphs, applied in the context of networks, sparse matrix factorizations, iterative solvers, fast multi-pole methods, automatic differentiation, high-performance computing, and linear programming. The workshop was held at the premises of the LIP laboratory of ENS Lyon and was generously supported by the LABEX MILYON (ANR-10-LABX-0070, Université de Lyon, within the program ''Investissements d'Avenir'' ANR-11-IDEX-0007 operated by the French National Research Agency), and by SIAM

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Wireless Monitoring Systems for Long-Term Reliability Assessment of Bridge Structures based on Compressed Sensing and Data-Driven Interrogation Methods.

    Full text link
    The state of the nation’s highway bridges has garnered significant public attention due to large inventories of aging assets and insufficient funds for repair. Current management methods are based on visual inspections that have many known limitations including reliance on surface evidence of deterioration and subjectivity introduced by trained inspectors. To address the limitations of current inspection practice, structural health monitoring (SHM) systems can be used to provide quantitative measures of structural behavior and an objective basis for condition assessment. SHM systems are intended to be a cost effective monitoring technology that also automates the processing of data to characterize damage and provide decision information to asset managers. Unfortunately, this realization of SHM systems does not currently exist. In order for SHM to be realized as a decision support tool for bridge owners engaged in performance- and risk-based asset management, technological hurdles must still be overcome. This thesis focuses on advancing wireless SHM systems. An innovative wireless monitoring system was designed for permanent deployment on bridges in cold northern climates which pose an added challenge as the potential for solar harvesting is reduced and battery charging is slowed. First, efforts advancing energy efficient usage strategies for WSNs were made. With WSN energy consumption proportional to the amount of data transmitted, data reduction strategies are prioritized. A novel data compression paradigm termed compressed sensing is advanced for embedment in a wireless sensor microcontroller. In addition, fatigue monitoring algorithms are embedded for local data processing leading to dramatic data reductions. In the second part of the thesis, a radical top-down design strategy (in contrast to global vibration strategies) for a monitoring system is explored to target specific damage concerns of bridge owners. Data-driven algorithmic approaches are created for statistical performance characterization of long-term bridge response. Statistical process control and reliability index monitoring are advanced as a scalable and autonomous means of transforming data into information relevant to bridge risk management. Validation of the wireless monitoring system architecture is made using the Telegraph Road Bridge (Monroe, Michigan), a multi-girder short-span highway bridge that represents a major fraction of the U.S. national inventory.PhDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116749/1/ocosean_1.pd

    Managing distributed situation awareness in a team of agents

    Get PDF
    The research presented in this thesis investigates the best ways to manage Distributed Situation Awareness (DSA) for a team of agents tasked to conduct search activity with limited resources (battery life, memory use, computational power, etc.). In the first part of the thesis, an algorithm to coordinate agents (e.g., UAVs) is developed. This is based on Delaunay triangulation with the aim of supporting efficient, adaptable, scalable, and predictable search. Results from simulation and physical experiments with UAVs show good performance in terms of resources utilisation, adaptability, scalability, and predictability of the developed method in comparison with the existing fixed-pattern, pseudorandom, and hybrid methods. The second aspect of the thesis employs Bayesian Belief Networks (BBNs) to define and manage DSA based on the information obtained from the agents' search activity. Algorithms and methods were developed to describe how agents update the BBN to model the system’s DSA, predict plausible future states of the agents’ search area, handle uncertainties, manage agents’ beliefs (based on sensor differences), monitor agents’ interactions, and maintains adaptable BBN for DSA management using structural learning. The evaluation uses environment situation information obtained from agents’ sensors during search activity, and the results proved superior performance over well-known alternative methods in terms of situation prediction accuracy, uncertainty handling, and adaptability. Therefore, the thesis’s main contributions are (i) the development of a simple search planning algorithm that combines the strength of fixed-pattern and pseudorandom methods with resources utilisation, scalability, adaptability, and predictability features; (ii) a formal model of DSA using BBN that can be updated and learnt during the mission; (iii) investigation of the relationship between agents search coordination and DSA management

    Edge Computing for Internet of Things

    Get PDF
    The Internet-of-Things is becoming an established technology, with devices being deployed in homes, workplaces, and public areas at an increasingly rapid rate. IoT devices are the core technology of smart-homes, smart-cities, intelligent transport systems, and promise to optimise travel, reduce energy usage and improve quality of life. With the IoT prevalence, the problem of how to manage the vast volumes of data, wide variety and type of data generated, and erratic generation patterns is becoming increasingly clear and challenging. This Special Issue focuses on solving this problem through the use of edge computing. Edge computing offers a solution to managing IoT data through the processing of IoT data close to the location where the data is being generated. Edge computing allows computation to be performed locally, thus reducing the volume of data that needs to be transmitted to remote data centres and Cloud storage. It also allows decisions to be made locally without having to wait for Cloud servers to respond

    Autonomous surveillance in an urban environment

    Get PDF
    A number of algorithms have been developed in the past for the purposes of target tracking, these have generally been for simple polygonal environments. However as the technology for autonomous vehicles develops for use in the real world these tracking algorithms need to be tested in larger more realistic environments. This work investigates the use of tracking algorithms to control a team of road based robotic platforms, tracking pedestrian targets in urban environments. The novelty of this work is in the identification of the aspects of the environment that affect target tracking algorithms, and modifying the algorithms to cope with them. Problems such as the frequent stalemates reached as an algorithms movement is limited by the highly restricted movement space or the identification of “short cuts” in which the target can take much shorter routes between positions than the robots. Algorithms are developed that overcome these limitations and they are tested in a simulation that is an accurate representation of a real environment. The algorithms are partly based on existing work and are developed extensively to be suitable for the environment. These algorithms are tested for their ability to maintain visual contact with the target. The scenario is tested with varying numbers of robots, speeds and locations. Three algorithms were developed and tested, one built as an extension of existing target tracking algorithms (Combined Urban Tracker) and another two algorithms developed specifically for this environment (Short Cut Path, and Branch). It is concluded that the Combined Urban Tracker and Short Cut Path algorithms performed comparably with a less than 0:3% difference in performance between the two both averaging roughly 54% effectiveness overall, however the Branch algorithm fared significantly worse averaging only 43% overall. The areas within the environment that give significant problems are large open spaces and areas that are significantly occluded from the road network. This work provides a platform on which further development in this area can be based in order to progress tracking algorithms towards being of practical use

    Development and Evaluation of Sensor Concepts for Ageless Aerospace Vehicles: Report 6 - Development and Demonstration of a Self-Organizing Diagnostic System for Structural Health Monitoring

    Get PDF
    This report describes a significant advance in the capability of the CSIRO/NASA structural health monitoring Concept Demonstrator (CD). The main thrust of the work has been the development of a mobile robotic agent, and the hardware and software modifications and developments required to enable the demonstrator to operate as a single, self-organizing, multi-agent system. This single-robot system is seen as the forerunner of a system in which larger numbers of small robots perform inspection and repair tasks cooperatively, by self-organization. While the goal of demonstrating self-organized damage diagnosis was not fully achieved in the time available, much of the work required for the final element that enables the robot to point the video camera and transmit an image has been completed. A demonstration video of the CD and robotic systems operating will be made and forwarded to NASA

    Efficient Factor Graph Fusion for Multi-robot Mapping

    Get PDF
    This work presents a novel method to efficiently factorize the combination of multiple factor graphs having common variables of estimation. The fast-paced innovation in the algebraic graph theory has enabled new tools of state estimation like factor graphs. Recent factor graph formulation for Simultaneous Localization and Mapping (SLAM) like Incremental Smoothing and Mapping using the Bayes tree (ISAM2) has been very successful and garnered much attention. Variable ordering, a well-known technique in linear algebra is employed for solving the factor graph. Our primary contribution in this work is to reuse the variable ordering of the graphs being combined to find the ordering of the fused graph. In the case of mapping, multiple robots provide a great advantage over single robot by providing a faster map coverage and better estimation quality. This coupled with an inevitable increase in the number of robots around us produce a demand for faster algorithms. For example, a city full of self-driving cars could pool their observation measurements rapidly to plan a traffic free navigation. By reusing the variable ordering of the parent graphs we were able to produce an order-of-magnitude difference in the time required for solving the fused graph. We also provide a formal verification to show that the proposed strategy does not violate any of the relevant standards. A common problem in multi-robot SLAM is relative pose graph initialization to produce a globally consistent map. The other contribution addresses this by minimizing a specially formulated error function as a part of solving the factor graph. The performance is illustrated on a publicly available SuiteSparse dataset and the multi-robot AP Hill dataset

    MATCOS-10

    Get PDF
    • …
    corecore