2,409 research outputs found

    Dynamic load balancing in parallel KD-tree k-means

    Get PDF
    One among the most influential and popular data mining methods is the k-Means algorithm for cluster analysis. Techniques for improving the efficiency of k-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting geometrical constraints and an efficient data structure, notably a multidimensional binary search tree (KD-Tree). These techniques allow to reduce the number of distance computations the algorithm performs at each iteration. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient k-Means variants in parallel computing environments. In this work, we provide a parallel formulation of the KD-Tree based k-Means algorithm for distributed memory systems and address its load balancing issue. Three solutions have been developed and tested. Two approaches are based on a static partitioning of the data set and a third solution incorporates a dynamic load balancing policy

    The Bregman Variational Dual-Tree Framework

    Full text link
    Graph-based methods provide a powerful tool set for many non-parametric frameworks in Machine Learning. In general, the memory and computational complexity of these methods is quadratic in the number of examples in the data which makes them quickly infeasible for moderate to large scale datasets. A significant effort to find more efficient solutions to the problem has been made in the literature. One of the state-of-the-art methods that has been recently introduced is the Variational Dual-Tree (VDT) framework. Despite some of its unique features, VDT is currently restricted only to Euclidean spaces where the Euclidean distance quantifies the similarity. In this paper, we extend the VDT framework beyond the Euclidean distance to more general Bregman divergences that include the Euclidean distance as a special case. By exploiting the properties of the general Bregman divergence, we show how the new framework can maintain all the pivotal features of the VDT framework and yet significantly improve its performance in non-Euclidean domains. We apply the proposed framework to different text categorization problems and demonstrate its benefits over the original VDT.Comment: Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI2013

    MWAND: A New Early Termination Algorithm for Fast and Efficient Query Evaluation

    Get PDF
    Nowadays, current information systems are so large and maintain huge amount of data. At every time, they process millions of documents and millions of queries. In order to choose the most important responses from this amount of data, it is well to apply what is so called early termination algorithms. These ones attempt to extract the Top-K documents according to a specified increasing monotone function. The principal idea behind is to reach and score the most significant less number of documents. So, they avoid fully processing the whole documents. WAND algorithm is at the state of the art in this area. Despite it is efficient, it is missing effectiveness and precision. In this paper, we propose two contributions, the principal proposal is a new early termination algorithm based on WAND approach, we call it MWAND (Modified WAND). This one is faster and more precise than the first. It has the ability to avoid unnecessary WAND steps. In this work, we integrate a tree structure as an index into WAND and we add new levels in query processing. In the second contribution, we define new fine metrics to ameliorate the evaluation of the retrieved information. The experimental results on real datasets show that MWAND is more efficient than the WAND approach

    Efficient query processing for scalable web search

    Get PDF
    Search engines are exceptionally important tools for accessing information in today’s world. In satisfying the information needs of millions of users, the effectiveness (the quality of the search results) and the efficiency (the speed at which the results are returned to the users) of a search engine are two goals that form a natural trade-off, as techniques that improve the effectiveness of the search engine can also make it less efficient. Meanwhile, search engines continue to rapidly evolve, with larger indexes, more complex retrieval strategies and growing query volumes. Hence, there is a need for the development of efficient query processing infrastructures that make appropriate sacrifices in effectiveness in order to make gains in efficiency. This survey comprehensively reviews the foundations of search engines, from index layouts to basic term-at-a-time (TAAT) and document-at-a-time (DAAT) query processing strategies, while also providing the latest trends in the literature in efficient query processing, including the coherent and systematic reviews of techniques such as dynamic pruning and impact-sorted posting lists as well as their variants and optimisations. Our explanations of query processing strategies, for instance the WAND and BMW dynamic pruning algorithms, are presented with illustrative figures showing how the processing state changes as the algorithms progress. Moreover, acknowledging the recent trends in applying a cascading infrastructure within search systems, this survey describes techniques for efficiently integrating effective learned models, such as those obtained from learning-to-rank techniques. The survey also covers the selective application of query processing techniques, often achieved by predicting the response times of the search engine (known as query efficiency prediction), and making per-query tradeoffs between efficiency and effectiveness to ensure that the required retrieval speed targets can be met. Finally, the survey concludes with a summary of open directions in efficient search infrastructures, namely the use of signatures, real-time, energy-efficient and modern hardware and software architectures

    Efficient processing of similarity queries with applications

    Get PDF
    Today, a myriad of data sources, from the Internet to business operations to scientific instruments, produce large and different types of data. Many application scenarios, e.g., marketing analysis, sensor networks, and medical and biological applications, call for identifying and processing similarities in big data. As a result, it is imperative to develop new similarity query processing approaches and systems that scale from low dimensional data to high dimensional data, from single machine to clusters of hundreds of machines, and from disk-based to memory-based processing. This dissertation introduces and studies several similarity-aware query operators, analyzes and optimizes their performance. The first contribution of this dissertation is an SQL-based Similarity Group-by operator (SGB, for short) that extends the semantics of the standard SQL Group-by operator to group data with similar but not necessarily equal values. We realize these SGB operators by extending the Standard SQL Group-by and introduce two new SGB operators for multi-dimensional data. We implement and test the new SGB operators and their algorithms inside an open-source centralized database server (PostgreSQL). In the second contribution of this dissertation, we study how to efficiently process Hamming-distance-based similarity queries (Hamming-distance select and Hamming-distance join) that are crucial to many applications. We introduce a new index, termed the HA-Index, that speeds up distance comparisons and eliminates redundancies when performing the two flavors of Hamming distance range queries (namely, the selects and joins). In the third and last contribution of this dissertation, we develop a system for similarity query processing and optimization in an in-memory and distributed setup for big spatial data. We propose a query scheduler and a distributed query optimizer that use a new cost model to optimize the cost of similarity query processing in this in-memory distributed setup. The scheduler and query optimizer generates query execution plans that minimize the effect of query skew. The query scheduler employs new spatial indexing techniques based on bloom filters to forward queries to the appropriate local sites. The proposed query processing and optimization techniques are prototyped inside Spark, a distributed main-memory computation system

    Geometric, Feature-based and Graph-based Approaches for the Structural Analysis of Protein Binding Sites : Novel Methods and Computational Analysis

    Get PDF
    In this thesis, protein binding sites are considered. To enable the extraction of information from the space of protein binding sites, these binding sites must be mapped onto a mathematical space. This can be done by mapping binding sites onto vectors, graphs or point clouds. To finally enable a structure on the mathematical space, a distance measure is required, which is introduced in this thesis. This distance measure eventually can be used to extract information by means of data mining techniques
    • …
    corecore