5 research outputs found

    Multi-Sensory Emotion Recognition with Speech and Facial Expression

    Get PDF
    Emotion plays an important role in human beings’ daily lives. Understanding emotions and recognizing how to react to others’ feelings are fundamental to engaging in successful social interactions. Currently, emotion recognition is not only significant in human beings’ daily lives, but also a hot topic in academic research, as new techniques such as emotion recognition from speech context inspires us as to how emotions are related to the content we are uttering. The demand and importance of emotion recognition have highly increased in many applications in recent years, such as video games, human computer interaction, cognitive computing, and affective computing. Emotion recognition can be done from many sources including text, speech, hand, and body gesture as well as facial expression. Presently, most of the emotion recognition methods only use one of these sources. The emotion of human beings changes every second and using a single way to process the emotion recognition may not reflect the emotion correctly. This research is motivated by the desire to understand and evaluate human beings’ emotion from multiple ways such as speech and facial expressions. In this dissertation, multi-sensory emotion recognition has been exploited. The proposed framework can recognize emotion from speech, facial expression, and both of them. There are three important parts in the design of the system: the facial emotion recognizer, the speech emotion recognizer, and the information fusion. The information fusion part uses the results from the speech emotion recognition and facial emotion recognition. Then, a novel weighted method is used to integrate the results, and a final decision of the emotion is given after the fusion. The experiments show that with the weighted fusion methods, the accuracy can be improved to an average of 3.66% compared to fusion without adding weight. The improvement of the recognition rate can reach 18.27% and 5.66% compared to the speech emotion recognition and facial expression recognition, respectively. By improving the emotion recognition accuracy, the proposed multi-sensory emotion recognition system can help to improve the naturalness of human computer interaction

    Multi-Sensory Emotion Recognition with Speech and Facial Expression

    Get PDF
    Emotion plays an important role in human beings’ daily lives. Understanding emotions and recognizing how to react to others’ feelings are fundamental to engaging in successful social interactions. Currently, emotion recognition is not only significant in human beings’ daily lives, but also a hot topic in academic research, as new techniques such as emotion recognition from speech context inspires us as to how emotions are related to the content we are uttering. The demand and importance of emotion recognition have highly increased in many applications in recent years, such as video games, human computer interaction, cognitive computing, and affective computing. Emotion recognition can be done from many sources including text, speech, hand, and body gesture as well as facial expression. Presently, most of the emotion recognition methods only use one of these sources. The emotion of human beings changes every second and using a single way to process the emotion recognition may not reflect the emotion correctly. This research is motivated by the desire to understand and evaluate human beings’ emotion from multiple ways such as speech and facial expressions. In this dissertation, multi-sensory emotion recognition has been exploited. The proposed framework can recognize emotion from speech, facial expression, and both of them. There are three important parts in the design of the system: the facial emotion recognizer, the speech emotion recognizer, and the information fusion. The information fusion part uses the results from the speech emotion recognition and facial emotion recognition. Then, a novel weighted method is used to integrate the results, and a final decision of the emotion is given after the fusion. The experiments show that with the weighted fusion methods, the accuracy can be improved to an average of 3.66% compared to fusion without adding weight. The improvement of the recognition rate can reach 18.27% and 5.66% compared to the speech emotion recognition and facial expression recognition, respectively. By improving the emotion recognition accuracy, the proposed multi-sensory emotion recognition system can help to improve the naturalness of human computer interaction

    Synthesising prosody with insufficient context

    Get PDF
    Prosody is a key component in human spoken communication, signalling emotion, attitude, information structure, intention, and other communicative functions through perceived variation in intonation, loudness, timing, and voice quality. However, the prosody in text-to-speech (TTS) systems is often monotonous and adds no additional meaning to the text. Synthesising prosody is difficult for several reasons: I focus on three challenges. First, prosody is embedded in the speech signal, making it hard to model with machine learning. Second, there is no clear orthography for prosody, meaning it is underspecified in the input text and making it difficult to directly control. Third, and most importantly, prosody is determined by the context of a speech act, which TTS systems do not, and will never, have complete access to. Without the context, we cannot say if prosody is appropriate or inappropriate. Context is wide ranging, but state-of-the-art TTS acoustic models only have access to phonetic information and limited structural information. Unfortunately, most context is either difficult, expensive, or impos- sible to collect. Thus, fully specified prosodic context will never exist. Given there is insufficient context, prosody synthesis is a one-to-many generative task: it necessitates the ability to produce multiple renditions. To provide this ability, I propose methods for prosody control in TTS, using either explicit prosody features, such as F0 and duration, or learnt prosody representations disentangled from the acoustics. I demonstrate that without control of the prosodic variability in speech, TTS will produce average prosody—i.e. flat and monotonous prosody. This thesis explores different options for operating these control mechanisms. Random sampling of a learnt distribution of prosody produces more varied and realistic prosody. Alternatively, a human-in-the-loop can operate the control mechanism—using their intuition to choose appropriate prosody. To improve the effectiveness of human-driven control, I design two novel approaches to make control mechanisms more human interpretable. Finally, it is important to take advantage of additional context as it becomes available. I present a novel framework that can incorporate arbitrary additional context, and demonstrate my state-of- the-art context-aware model of prosody using a pre-trained and fine-tuned language model. This thesis demonstrates empirically that appropriate prosody can be synthesised with insufficient context by accounting for unexplained prosodic variation

    Perceptual aspects of voice-source parameters

    Get PDF
    xii+114hlm.;24c

    Tagungsband der 12. Tagung Phonetik und Phonologie im deutschsprachigen Raum

    Get PDF
    corecore