13,587 research outputs found

    Predictive control of wind turbines by considering wind speed forecasting techniques

    Get PDF
    A wind turbine system is operated such that the points of wind rotor curve and electrical generator curve coincide. In order to obtain maximum power output of a wind turbine generator system, it is necessary to drive the wind turbine at an optimal rotor speed for a particular wind speed. A Maximum Power Point Tracking (MPPT) controller is used for this purpose. In fixed-pitch variable-speed wind turbines, wind-rotor parameters are fixed and the restoring torque of the generator needs to be adjusted to maintain optimum rotor speed at a particular wind speed for optimum power output. In turbulent wind environment, control of variable-speed fixed-pitch wind turbine systems to continuously operate at the maximum power points becomes difficult due to fluctuation of wind speeds. In this paper, wind speed forecasting techniques will be considered for predictive optimum control system of wind turbines

    Maximum power point tracking for variable-speed fixed-pitch small wind turbines

    Get PDF
    Variable-speed, fixed-pitch wind turbines are required to optimize power output performance without the aerodynamic controls. A wind turbine generator system is operated such that the optimum points of wind rotor curve and electrical generator curve coincide. In order to obtain maximum power output of a wind turbine generator system, it is necessary to drive the wind turbine at an optimal rotor speed for a particular wind speed. In fixed-pitch variablespeed wind turbines, wind-rotor performance is fixed and the restoring torque of the generator needs to be adjusted to maintain optimum rotor speed at a particular wind speed for maximum aerodynamic power output. In turbulent wind environment, control of wind turbine systems to continuously operate at the maximum power points becomes difficult due to fluctuation of wind speeds. Therefore, special emphasis is given to operating at maximum aerodynamic power points of wind rotor. In this paper, the performance of a Fuzzy Logic Maximum Power Point Tracking (MPPT) controller is investigated for applications on variable-speed fixed-pitch small- scale wind turbines

    Analysis of tower/blade interaction in the cancellation of the tower fore-aft mode via control

    Get PDF
    With the increase in size of wind turbines, there is increasing interest in exploiting the pitch control capability of variable speed turbines to alleviate tower fatigue loads. The most direct method is to modify the blade pitch angle in response to a measurement of tower acceleration. It is shown that the ap mode has a central role in determining whether this approach is effective since there is a strong interaction between the blade ap-wise mode and the tower fore-aft mode. Several different approaches to the design of the controller for the tower speed feedback loop are investigated. It is concluded that a reduction in the tower loads of up to 18% is possible for multi-megawatt sized wind turbines

    Investigation on the impact of design wind speed and control strategy on the performance of fixed-pitch variable-speed wind turbines

    Get PDF
    Wind turbine blade design optimization remains one of the fundamental research areas for modern wind turbine technology. The general design process for fixed-pitch variablespeed wind turbine blades assumes the rated wind speed as the design wind speed. However, for a fixed-pitch wind turbine with fixed rotor diameter and rated power at rated speed, we do not know the optimum design wind speed, which should be used for the calculation of the wind turbine blade parameters based on a particular aerofoil for a specific site with low annual mean wind speed. This paper investigates the impact of design wind speed and control strategy on the performance of fixed-pitch wind turbines through a set of design case studies. The design wind speeds are considered at the more prevalent wind speeds than the rated wind speed. Three different control strategies are addressed, i.e. maximum power point tracking, mixture of variable-speed and fixed-speed, and over-speeding. Annual energy production, blade manufacturing cost, aerodynamic load performance and cost of energy are analyzed and compared using the design case studies. The results reveal a clear picture in determining the optimum design wind speed and control strategy for both maximizing annual energy production and minimizing cost of energy

    Transient analysis of variable-speed wind turbines at wind speed disturbances and a pitch control malfunction

    Get PDF
    As wind power generation undergoes rapid growth, new technical challenges emerge: dynamic stability and power quality. The influence of wind speed disturbances and a pitch control malfunction on the quality of the energy injected into the electric grid is studied for variable-speed wind turbines with different power-electronic converter topologies. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with permanent magnet synchronous generators. The performance of disturbance attenuation and system robustness is ascertained. Simulation results are presented and conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved

    Multi-mode soft switching control for variable pitch of wind turbines based on T-S fuzzy weighted

    Get PDF
    Variable pitch control is an effective way to ensure the constant power operation of the wind turbines over rated wind speed. The pitch actuator acts frequently with larger amplitude and the increasing mechanical fatigue load of parts of wind turbines affects the output quality of generator and damages the service life of wind turbines. The existing switching control methods only switch at a certain threshold, which can result in switch oscillation. In order to deal with these problems, a multi-mode soft switching variable pitch control strategy was put forward based on Takagi-Sugeno (T-S) fuzzy weighted to accomplish soft switch, which combined intelligent control with classical control. The T-S fuzzy inference was carried out according to the error and its change rate, which was used to smooth the modal outputs of fuzzy control, radial basis function neuron network proportion integration differentiation (RBFNN PID) control and proportion integration (PI) control. This method takes the advantages of the three controllers into consideration. A multi-mode soft switch control model for variable pitch of permanent magnet direct drive wind turbines was built in the paper. The simulation results show that this method has the advantages of three control modes, switch oscillation is overcome. The integrated control performance is superior to the others, which can not only stabilize the output power of wind turbines but also reduce the fatigue load

    Augmented Adaptive Control of a Wind Turbine in the Presence of Structural Modes

    Get PDF
    Wind turbines operate in highly turbulent environments resulting in aerodynamic loads that can easily excite turbine structural modes, potentially causing component fatigue and failure. Two key technology drivers for turbine manufacturers are increasing turbine up time and reducing maintenance costs. Since the trend in wind turbine design is towards larger, more flexible turbines with lower frequency structural modes, manufacturers will want to develop methods to operate in the presence of these modes. Accurate models of the dynamic characteristics of new wind turbines are often not available due to the complexity and expense of the modeling task, making wind turbines ideally suited to adaptive control. In this paper, we develop theory for adaptive control with rejection of disturbances in the presence of modes that inhibit the controller. We use this method to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine operating in Region 3. The objective of the adaptive pitch controller is to regulate generator speed, accommodate wind gusts, and reduce the interference of certain structural modes in feedback. The control objective is accomplished by collectively pitching the turbine blades. The adaptive pitch controller for Region 3 is compared in simulations with a baseline classical Proportional Integrator (PI) collective pitch controller

    Control design toolbox for large scale variable speed pitch regulated wind turbines

    Get PDF
    The trend towards large multi-MW wind turbineshas given new impetus to the development of wind turbine controllers.Additional objectives are being placed on the controllermaking the specification of the control system more complex. A new toolbox, which assists with most of the control design cycle,has been developed. Its purpose is to assist and guide the control system designer through the design cycle, thereby enabling faster design. With the choice of control strategy unrestricted,the toolbox is sufficiently flexible to support the design processfor the aforementioned more complex specifications
    • …
    corecore