171,932 research outputs found

    Not all pipelines are created equal. Pipelines have different characteristics, and would therefore show different levels of integrity and fail differently. The failure mode and cause of a given pipeline depends on several factors including the design, operating and environmental parameters. A new tool was developed to evaluate pipeline integrity and assess its potential failure mode, patterns, and rate based on the critical pipeline parameters. These parameters include the pipeline material of construction, wall thickness, operating pressure, service material, backfill medium/material, age, coating, pipeline size and other relevant parameters. The new tool was developed using pipeline data collected from the European Union, UK, and USA for pipeline failures over four decades. Failure models and patterns were analyzed, and over 60,000 failure modes/pattern combination were identified. The tool predicts the failure mode and patterns in terms of failure rate distribution by size of leak and its causes. It also shows the relative Pipeline Risk Index, defined as the pipeline’s potential failure rate relative to average pipeline population in the industry within similar pipeline categories. Ignition probabilities for pipeline failures were also analyzed and are predicted by this tool for each pipeline leak depending on the leak characteristics.

    Get PDF
    PresentationNot all pipelines are created equal. Pipelines have different characteristics, and would therefore show different levels of integrity and fail differently. The failure mode and cause of a given pipeline depends on several factors including the design, operating and environmental parameters. A new tool was developed to evaluate pipeline integrity and assess its potential failure mode, patterns, and rate based on the critical pipeline parameters. These parameters include the pipeline material of construction, wall thickness, operating pressure, service material, backfill medium/material, age, coating, pipeline size and other relevant parameters. The new tool was developed using pipeline data collected from the European Union, UK, and USA for pipeline failures over four decades. Failure models and patterns were analyzed, and over 60,000 failure modes/pattern combination were identified. The tool predicts the failure mode and patterns in terms of failure rate distribution by size of leak and its causes. It also shows the relative Pipeline Risk Index, defined as the pipeline’s potential failure rate relative to average pipeline population in the industry within similar pipeline categories. Ignition probabilities for pipeline failures were also analyzed and are predicted by this tool for each pipeline leak depending on the leak characteristics

    Mathematical Modeling Of Horizontal Displacement Of Above-ground Gas Pipelines

    Full text link
    The modern geodetic equipment allows observations as soon as possible, providing high accuracy and productivity. Achieving high accuracy of measurement is impossible without taking into account external factors that create influence on an observation object. Therefore, in order to evaluate an influence of thermal displacement on the results of geodetic monitoring a mathematical model of horizontal displacement of above-ground pipelines was theoretically grounded and built. In this paper we used data of experimental studies on the existing pipelines "Soyuz" and "Urengoy - Pomary - Uzhgorod". Above-ground pipeline was considered as a dynamic system "building - environment". Based on the characteristics of dynamic systems the correlation between the factors of thermal influence and horizontal displacement of the pipeline axis was defined.Establishing patterns between input factors and output response of the object can be useful not only for geodetic control, but also for their consideration in the design of new objects. It was investigated that the greatest influence on the accuracy of geodetic observations can create dispersion of high-frequency oscillations caused by daily thermal displacement. The magnitude of displacement exceeds actual measurement error.The article presents the results of calculation of high-frequency oscillations of above-ground gas pipeline.The result made it possible to substantiate the accuracy and methodology of geodetic observations of the horizontal displacement of pipeline axes taking into account an influence of cyclical thermal displacement.Research results were recommended for use in practice for enterprises that serve the main gas pipelines and successfully tested by specialists of PJSC "Ukrtransgaz" (Kharkiv, Ukraine) during the technical state control of aerial pipeline crossing in Ukraine and also can be used to form the relevant regulations

    Organisational Abstractions for the Analysis and Design of Multi-Agent Systems

    No full text
    The architecture of a multi-agent system can naturally be viewed as a computational organisation. For this reason, we believe organisational abstractions should play a central role in the analysis and design of such systems. To this end, the concepts of agent roles and role models are increasingly being used to specify and design multi-agent systems. However, this is not the full picture. In this paper we introduce three additional organisational concepts - organisational rules, organisational structures, and organisational patterns - that we believe are necessary for the complete specification of computational organisations. We view the introduction of these concepts as a step towards a comprehensive methodology for agent-oriented systems

    A Fast and Accurate Cost Model for FPGA Design Space Exploration in HPC Applications

    Get PDF
    Heterogeneous High-Performance Computing (HPC) platforms present a significant programming challenge, especially because the key users of HPC resources are scientists, not parallel programmers. We contend that compiler technology has to evolve to automatically create the best program variant by transforming a given original program. We have developed a novel methodology based on type transformations for generating correct-by-construction design variants, and an associated light-weight cost model for evaluating these variants for implementation on FPGAs. In this paper we present a key enabler of our approach, the cost model. We discuss how we are able to quickly derive accurate estimates of performance and resource-utilization from the design’s representation in our intermediate language. We show results confirming the accuracy of our cost model by testing it on three different scientific kernels. We conclude with a case-study that compares a solution generated by our framework with one from a conventional high-level synthesis tool, showing better performance and power-efficiency using our cost model based approach

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044
    corecore