117 research outputs found

    A Comparison of E/D-MESFET Gallium Arsenide and CMOS Silicon for VLSI Processor Design

    Get PDF
    Gallium Arsenide (GaAs) circuits have long been known for their speed. They are now being considered for single chip processors since GaAs chips are reaching VLSI complexities. Design constraints that affect both system and processor design accompany the new technology. The goal of this work is to compare and contrast designs in GaAs-E/D MESFET and Si-CMOS technologies as they apply to ALU design. These differences are emphasized by examining the design of several structures in GaAs for implementation of Stanford University’s MIPS processor in GaAs. The three topics discussed are adder design, multiplier placement and design, and cache effects on multiplier design. The comparisons were made to help optimize the design of 32-bit GaAs microprocessor for RCA. The results show that the high speed of GaAs devices allows serial rather than parallel implementation of structures in GaAs; these serial structures use less area than their parallel counterparts without any degradation of performance. The total reduction in area is necessary to compensate for the area used by large fanin and fanout structures. In addition, any solutions proposed for each structure must also take into account the long off-chip delays

    Architectural Approaches For Gallium Arsenide Exploitation In High-Speed Computer Design

    Get PDF
    Continued advances in the capability of Gallium Arsenide (GaAs)technology have finally drawn serious interest from computer system designers. The recent demonstration of very large scale integration (VLSI) laboratory designs incorporating very fast GaAs logic gates herald a significant role for GaAs technology in high-speed computer design:1 In this thesis we investigate design approaches to best exploit this promising technology in high-performance computer systems. We find significant differences between GaAs and Silicon technologies which are of relevance for computer design. The advantage that GaAs enjoys over Silicon in faster transistor switching speed is countered by a lower transistor count capability for GaAs integrated circuits. In addition, inter-chip signal propagation speeds in GaAs systems do not experience the same speedup exhibited by GaAs transistors; thus, GaAs designs are penalized more severely by inter-chip communication. The relatively low density of GaAs chips and the high cost of communication between them are significant obstacles to the full exploitation of the fast transistors of GaAs technology. A fast GaAs processor may be excessively underutilized unless special consideration is given to its information (instructions and data) requirements. Desirable GaAs system design approaches encourage low hardware resource requirements, and either minimize the processor’s need for off-chip information, maximize the rate of off-chip information transfer, or overlap off-chip information transfer with useful computation. We show the impact that these considerations have on the design of the instruction format, arithmetic unit, memory system, and compiler for a GaAs computer system. Through a simulation study utilizing a set of widely-used benchmark programs, we investigate several candidate instruction pipelines and candidate instruction formats in a GaAs environment. We demonstrate the clear performance advantage of an instruction pipeline based upon a pipelined memory system over a typical Silicon-like pipeline. We also show the performance advantage of packed instruction formats over typical Silicon instruction formats, and present a packed format which performs better than the experimental packed Stanford MIPS format

    Improving Application Performance by Dynamically Balancing Speed and Complexity in a GALS Microprocessor

    Get PDF
    Microprocessors are traditionally designed to provide “best overall” performance across a wide range of applications and operating environments. Several groups have proposed hardware techniques that save energy by “downsizing” hardware resources that are underutilized by particular applications. We explore the converse: “upsizing” hardware resources in order to improve performance relative to an aggressively clocked baseline processor. Our proposal depends critically on the ability to change frequencies independently in separate domains of a globally asynchronous, locally synchronous (GALS) microprocessor. We use a variant of our multiple clock domain (MCD) processor, with four independently clocked domains. Each domain is streamlined with modest hardware structures for very high clock frequency. Key structures can then be upsized on demand to exploit more distant parallelism, improve branch prediction, or increase cache capacity. Although doing so requires decreasing the associated domain frequency, other domain frequencies are unaffected. Measuring across a broad suite of application benchmarks, we find that configuring just once per application increases performance by an average of 17.6% compared to the best fully synchronous design. When adapting to application phases, performance improves by over 20%

    Dynamically Trading Frequency for Complexity in a GALS Microprocessor

    Get PDF
    Microprocessors are traditionally designed to provide “best overall” performance across a wide range of applications and operating environments. Several groups have proposed hardware techniques that save energy by “downsizing” hardware resources that are underutilized by the current application phase. Others have proposed a different energy-saving approach: dividing the processor into domains and dynamically changing the clock frequency and voltage within each domain during phases when the full domain frequency is not required. What has not been studied to date is how to exploit the adaptive nature of these approaches to improve performance rather than to save energy. In this paper, we describe an adaptive globally asynchronous, locally synchronous (GALS) microprocessor with a fixed global voltage and four independently clocked domains. Each domain is streamlined with modest hardware structures for very high clock frequency. Key structures can then be upsized on demand to exploit more distant parallelism, improve branch prediction, or increase cache capacity. Although doing so requires decreasing the associated domain frequency, other domain frequencies are unaffected. Our approach, therefore, is to maximize the throughput of each domain by finding the proper balance between the number of clock periods, and the clock frequency, for each application phase. To achieve this objective, we use novel hardware-based control techniques that accurately and efficiently capture the performance of all possible cache and queue configurations within a single interval, without having to resort to exhaustive online exploration or expensive offline profiling. Measuring across a broad suite of application benchmarks, we find that configuring our adaptive GALS processor just once per application yields 17.6% better performance, on average, than that of the “best overall” fully synchronous design. By adapting automatically to application phases, we can increase this advantage to more than 20%

    Design study of a low cost civil aviation GPS receiver system

    Get PDF
    A low cost Navstar receiver system for civil aviation applications was defined. User objectives and constraints were established. Alternative navigation processing design trades were evaluated. Receiver hardware was synthesized by comparing technology projections with various candidate system designs. A control display unit design was recommended as the result of field test experience with Phase I GPS sets and a review of special human factors for general aviation users. Areas requiring technology development to ensure a low cost Navstar Set in the 1985 timeframe were identified

    Gallium arsenide bit-serial integrated circuits

    Get PDF

    Advanced digital SAR processing study

    Get PDF
    A highly programmable, land based, real time synthetic aperture radar (SAR) processor requiring a processed pixel rate of 2.75 MHz or more in a four look system was designed. Variations in range and azimuth compression, number of looks, range swath, range migration and SR mode were specified. Alternative range and azimuth processing algorithms were examined in conjunction with projected integrated circuit, digital architecture, and software technologies. The advaced digital SAR processor (ADSP) employs an FFT convolver algorithm for both range and azimuth processing in a parallel architecture configuration. Algorithm performace comparisons, design system design, implementation tradeoffs and the results of a supporting survey of integrated circuit and digital architecture technologies are reported. Cost tradeoffs and projections with alternate implementation plans are presented

    The 1992 4th NASA SERC Symposium on VLSI Design

    Get PDF
    Papers from the fourth annual NASA Symposium on VLSI Design, co-sponsored by the IEEE, are presented. Each year this symposium is organized by the NASA Space Engineering Research Center (SERC) at the University of Idaho and is held in conjunction with a quarterly meeting of the NASA Data System Technology Working Group (DSTWG). One task of the DSTWG is to develop new electronic technologies that will meet next generation electronic data system needs. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The NASA SERC is proud to offer, at its fourth symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories, the electronics industry, and universities. These speakers share insights into next generation advances that will serve as a basis for future VLSI design

    Data systems elements technology assessment and system specifications, issue no. 2

    Get PDF
    The ability to satisfy the objectives of future NASA Office of Applications programs is dependent on technology advances in a number of areas of data systems. The hardware and software technology of end-to-end systems (data processing elements through ground processing, dissemination, and presentation) are examined in terms of state of the art, trends, and projected developments in the 1980 to 1985 timeframe. Capability is considered in terms of elements that are either commercially available or that can be implemented from commercially available components with minimal development

    Space station data system analysis/architecture study. Task 2: Options development DR-5. Volume 1: Technology options

    Get PDF
    The second task in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This volume identifies the preferred options in the technology category and characterizes these options with respect to performance attributes, constraints, cost, and risk. The technology category includes advanced materials, processes, and techniques that can be used to enhance the implementation of SSDS design structures. The specific areas discussed are mass storage, including space and round on-line storage and off-line storage; man/machine interface; data processing hardware, including flight computers and advanced/fault tolerant computer architectures; and software, including data compression algorithms, on-board high level languages, and software tools. Also discussed are artificial intelligence applications and hard-wire communications
    • 

    corecore