14 research outputs found

    Control Strategies of DC Microgrids Cluster:A Comprehensive Review

    Get PDF
    Multiple microgrids (MGs) close to each other can be interconnected to construct a cluster to enhance reliability and flexibility. This paper presents a comprehensive and comparative review of recent studies on DC MG clusters’ control strategies. Different schemes regarding the two significant control aspects of networked DC MGs, namely DC-link voltage control and power flow control between MGs, are investigated. A discussion about the architecture configuration of DC MG clusters is also provided. All advantages and limitations of various control strategies of recent studies are discussed in this paper. Furthermore, this paper discusses three types of consensus protocol with different time boundaries, including linear, finite, and fixed. Based on the main findings from the reviewed studies, future research recommendations are proposed

    CPS Attacks Mitigation Approaches on Power Electronic Systems with Security Challenges for Smart Grid Applications: A Review

    Get PDF
    This paper presents an inclusive review of the cyber-physical (CP) attacks, vulnerabilities, mitigation approaches on the power electronics and the security challenges for the smart grid applications. With the rapid evolution of the physical systems in the power electronics applications for interfacing renewable energy sources that incorporate with cyber frameworks, the cyber threats have a critical impact on the smart grid performance. Due to the existence of electronic devices in the smart grid applications, which are interconnected through communication networks, these networks may be subjected to severe cyber-attacks by hackers. If this occurs, the digital controllers can be physically isolated from the control loop. Therefore, the cyber-physical systems (CPSs) in the power electronic systems employed in the smart grid need special treatment and security. In this paper, an overview of the power electronics systems security on the networked smart grid from the CP perception, as well as then emphases on prominent CP attack patterns with substantial influence on the power electronics components operation along with analogous defense solutions. Furthermore, appraisal of the CPS threats attacks mitigation approaches, and encounters along the smart grid applications are discussed. Finally, the paper concludes with upcoming trends and challenges in CP security in the smart grid applications

    Applications of Power Electronics:Volume 2

    Get PDF

    A Comparative Study of Vehicle Platoon with Limited Output Information in Directed Topologies

    Get PDF
    This paper aims to study and compare the effect of limited-output information in various directed topology to the performance of vehicle platoon. Two distributed controllers based on limited-output information will be compared to cooperative state variable feedback control which designed based on full-state information. The comparison will be conducted for four common directed topologies in the vehicle platoon application. Simulation analysis is performed in three scenarios, namely under normal operations, when the leader moves with constant acceleration and when the platoon is subjected to constant communication delay. Performances comparison will be observed from inter-vehicular distance response in each follower and the results will be displayed with respect to the follower vehicle index in the platoon configuration. Finally, the behavior of each control scheme in various topologies will be summarized

    On the Security and Privacy of Implantable Medical Devices

    Get PDF

    On the Security and Privacy of Implantable Medical Devices

    Get PDF

    Energy, Science and Technology 2015. The energy conference for scientists and researchers. Book of Abstracts, EST, Energy Science Technology, International Conference & Exhibition, 20-22 May 2015, Karlsruhe, Germany

    Get PDF
    We are pleased to present you this Book of Abstracts, which contains the submitted contributions to the "Energy, Science and Technology Conference & Exhibition EST 2015". The EST 2015 took place from May, 20th until May, 22nd 2015 in Karlsruhe, Germany, and brought together many different stakeholders, who do research or work in the broad field of "Energy". Renewable energies have to present a relevant share in a sustainable energy system and energy efficiency has to guarantee that conventional as well as renewable energy sources are transformed and used in a reasonable way. The adaption of existing infrastructure and the establishment of new systems, storages and grids are necessary to face the challenges of a changing energy sector. Those three main topics have been the fundament of the EST 2015, which served as a platform for national and international attendees to discuss and interconnect the various disciplines within energy research and energy business. We thank the authors, who summarised their high-quality and important results and experiences within one-paged abstracts and made the conference and this book possible. The abstracts of this book have been peer-reviewed by an international Scientific Programme Committee and are ordered by type of presentation (oral or poster) and topics. You can navigate by using either the table of contents (page 3) or the conference programme (starting page 4 for oral presentations and page 21 for posters respectively)

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Wideband vibration energy harvesting using electromagnetic transduction for powering internet of things

    Get PDF
    The ‘Internet of Things-(IoT)’ envisions a world scattered with physical sensors that collect and transmit data about almost anything and thereby enabling intelligent decision-making for a smart environment. While technological advancements have reduced the power consumption of such devices significantly, the problem of perpetual energy supply beyond the limited capability of batteries is a bottleneck to this vision which is yet to be resolved. This issue has surged the research to investigate the prospect of harvesting the energy out of ambient mechanical vibrations. However, limited applications of conventional resonant devices under most practical environments involving frequency varying inputs, has gushed the research on wideband transducers recently. To facilitate multi-frequency operation at low-frequency regime, design innovations of the Silicon-onInsulator based MEMS suspension systems are performed through multi-modal activation. For continuous bandwidth widening, the benefits of using nonlinear stiffness in the system dynamics are investigated. By topologically varying the spring architectures, dramatically improved operational bandwidth with large power-density is obtained, which is benchmarked using a novel figure-of-merit. However, the fundamental phenomenon of multi-stability limits many nonlinear oscillator based applications including energy harvesting. To address this, an electrical control mechanism is introduced which dramatically improves the energy conversion efficiency over a wide bandwidth in a frequencyamplitude varying environment using only a small energy budget. The underlying effects are independent of the device-scale and the transduction methods, and are explained using a modified Duffing oscillator model. One of the key requirements for fully integrated electromagnetic transducers is the CMOS compatible batch-fabrication of permanent magnets with large energy-product. In the final module of the works, nano-structured CoPtP hard-magnetic material with large coercivity is developed at room-temperature using a current modulated electro-deposition technique. The demagnetization fields of the magnetic structures are minimized through optimized micro-patterns which enable the full integration of high performance electromagnetic energy harvesters
    corecore