36 research outputs found

    Drive network to a desired orbit by pinning control

    Get PDF
    summary:The primary objective of the present paper is to develop an approach for analyzing pinning synchronization stability in a complex delayed dynamical network with directed coupling. Some simple yet generic criteria for pinning such coupled network are derived analytically. Compared with some existing works, the primary contribution is that the synchronization manifold could be chosen as a weighted average of all the nodes states in the network for the sake of practical control tactics, which displays the different influences and contributions of the various nodes in synchronization seeking processes of the dynamical network. Furthermore, it is shown that in order to drive a complex network to a desired synchronization state, the coupling strength should vary according to the controller. In addition, the theoretical results about the time-invariant network is extended to the time-varying network, and the result on synchronization problem can also be extended to the consensus problem of networked multi-agent systems. Subsequently, the theoretic results are illustrated by a typical scale-free (SF) neuronal network. Numerical simulations with three kinds of the homogenous solutions, including an equilibrium point, a periodic orbit, and a chaotic attractor, are finally given to demonstrate the effectiveness of the proposed control methodology

    Consensus analysis of multiagent networks via aggregated and pinning approaches

    Get PDF
    This is the post-print version of of the Article - Copyright @ 2011 IEEEIn this paper, the consensus problem of multiagent nonlinear directed networks (MNDNs) is discussed in the case that a MNDN does not have a spanning tree to reach the consensus of all nodes. By using the Lie algebra theory, a linear node-and-node pinning method is proposed to achieve a consensus of a MNDN for all nonlinear functions satisfying a given set of conditions. Based on some optimal algorithms, large-size networks are aggregated to small-size ones. Then, by applying the principle minor theory to the small-size networks, a sufficient condition is given to reduce the number of controlled nodes. Finally, simulation results are given to illustrate the effectiveness of the developed criteria.This work was jointly supported by CityU under a research grant (7002355) and GRF funding (CityU 101109)

    Synchronization of fractional chaotic complex networks with delays

    Get PDF
    summary:The synchronization of fractional-order complex networks with delay is investigated in this paper. By constructing a novel Lyapunov-Krasovskii function VV and taking integer derivative instead of fractional derivative of the function, a sufficient criterion is obtained in the form of linear matrix inequalities to realize synchronizing complex dynamical networks. Finally, a numerical example is shown to illustrate the feasibility and effectiveness of the proposed method
    corecore